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Preface 

This report describes a methodology for determining the optimal allocation of 

resources to multilayer theater missile defenses, and it is an aid for thinking 

about theater missile defenses based upon the methodology. The work 
supporting the report was conducted under the Force Modernization and 
Employment program of Project AIR FORCE. The research was undertaken in 
support of the 1993 USAF Scientific Advisory Board summer study investigating 

theater missile defense investment strategies. This report should be of interest to 
those responsible for defining or assessing operational concepts, policymakers, 

program analysts, budgeters, and others who are involved in making decisions 
about missile defense programs. It also should be of interest to operations 

researchers, systems analysts, modelers, and others with an interest in 
mathematical approaches to solving complex defense problems. 

Project AIR FORCE 

Project AIR FORCE, a division of RAND, is the Air Force federally funded 
research and development center (FFRDC) for studies and analyses. It provides 

the Air Force with independent analyses of policy alternatives affecting the 
development, employment, combat readiness, and support of current and future 
aerospace forces. Research is carried out in three programs: Strategy, Doctrine, 

and Force Structure; Force Modernization and Employment; and Resource 

Management and System Acquisition. 

Project AIR FORCE is operated under Contract F49620-91-C-0003 between the 

Air Force and RAND. . 

Brent Bradley is Vice President and Director of Project AIR FORCE. Those 
interested in further information concerning Project AIR FORCE should contact 

his office directly: 

Brent D. Bradley 
RAND 
1700 Main Street 
P.O. Box 2138 
Santa Monica, California 90407-2138 
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Summary 

Iraqi Scud missile attacks during the Persian Gulf War dramatized U.S. 
vulnerability to theater ballistic (and potentially, cruise) missiles and illustrated 
all too clearly the threat of large-scale casualties to U.S. and allied forces posed by 

proliferating weapons of mass destruction around the world. The presence of 
these weapons could serve as a strong deterrent on U.S. actions, and could even 

result in constraining U.S. forces from achieving their objectives in regional 

conflicts. 

In light of these threats, U.S. planning for theater missile defense has shifted. In 

contrast to missile defense in the Cold War era, future missile defense operations 

are envisaged as part of a theater-level and essentially conventional campaign 

against adversaries with relatively small missile arsenals. 

This research focuses on one part of U.S. theater ballistic missile defense: active 

defense operations that destroy missiles after launch over the course of a 
campaign. We set out to determine how to allocate increasingly scarce resources 
among the various "pillars" of missile defense. More specifically, the question 

we posed was: How can we determine the optimum allocation of resources— 

where optimum means achieving a demanded probability that no attacking 
objects will survive all the layers of a missile defense and arrive intact at the 

intended target—at least cost? This report describes a methodology for making 
such allocations. It also attempts to illuminate the relationship between 
outcomes and resources in order to clarify where the greatest leverage for cost- 

effective investment lies. 

Approach 

Our discussion of methodology for resource allocation begins simply and 

becomes increasingly complex: 

• First, we describe the overall logic of the methodology by using a simple 

worksheet-based approach (Section 2). 

• Then we describe the principal cost drivers of missile defense:  layering, the 

size of the attacker's missile inventory, the demanded probability of no 
survivors, and the effectiveness of interceptors in each layer. We also 
consider several operational parameters (i.e., fractionation, saturation and 



exhaustion, and multiple sites to provide a "footprint") and cost variations 

(i.e., different interceptor costs among layers and buy-in costs). Using our 

basic model we are able to demonstrate how these factors affect the optimal 

allocation (Sections 3-5). 

• Next, we examine the effect of some critical uncertainties on the size of the 
missile defense system and demonstrate how much the inventory needs to be 
augmented to maintain confidence that the interceptors will not be exhausted 

before the campaign is over (Section 6). 

• Finally, we provide an illustrative mission area analysis to show how the 

model might be used to assess broad programmatic tradeoffs within a 

mission area (Section 7). 

Worksheet-Based Method 

The expected-value methodology defines the total resources the defender must 
expend in order to deploy a defense that achieves the demanded probability of 
no survivors over the campaign against a defined threat. The total resources are 

measured in terms of the number of interceptors the defense must deploy per 
object in the attacker's inventory. The principal value of the worksheet approach 

is that it uses a relatively simple parametric formulation for quantifying—in a 
simplified analytic setting—the optimal allocation of resources to various layers 

in a multilayered defense. 

The table below demonstrates an illustrative worksheet for determining the least- 
cost allocation of resources to a three-layer theater missile defense.1  The table 
shows the case where the single-shot probability of kill (SSPk) in each layer is 1/2 

and costs are treated in terms of the required interceptor inventory. We assume a 
demand for eight engagements per attacking object in the third layer. In other 

words, the problem is initially structured so that the number of engagements per 

attacking object in the last layer is specified and the optimal allocation in the 
previous layers is determined. This simple formulation is later discarded in 

favor of a less restrictive one. 

We gain several insights from the worksheet: 

• With no interceptors in the first and second layer (row one of the table), the 

"cost" is, by definition, eight interceptors per attacking object. 

•^We consider the term "layer" to be synonymous with a separate "look-shoot" and not 
necessarily tied to the conventional association with separate phases of missile defense (such as 
prelaunch, boost, postboost, midcourse, and terminal). 



Table S.l 

Worksheet for Determining the Least-Cost Defense Allocation 

Layer 
Total 
E/SO 

Total 
Cost/IO 

1st 
/    E/PO c / 

2nd 
E/PO     c / 

3rd 
E/PO c 

1 
1 
1 
1 
1 

0 1-0=0 
1 1 
2 2 
3 3 
4 4 

1 
1/2 
1/4 
1/8 
1/16 

8 
8 
8 
8 
8 

1-8=8 
4 
2 
1 
1/2 

8 
9 

10 
11 
12 

8 
5 
4 
4 
41/2 

1       0 
1       1 
1       2 
1       3 

0 
1 
2 
3 

1 
1/2 
1/4 
1/8 

3      3 
3       3/2 
3        3/4 
3       3/8 

1/8 
1/16 
1/32 
1/64 

8 
8 
8 
8 

1 
1/2 
1/4 
1/8 

11 
12 
13 
14 

4 
3 
3 
31/2 

NOTE: SSPk = 1/2, one cost unit per assigned interceptor, for all layers. Preferred allocations in 
bold, /is the fraction of the initial attacking force leaking to that layer, c is the cost per interceptor, 
assumed to be identical (1) for all layers. E/PO is the number of engagements per presented object, 
and Total E/SO is the total number of engagements per surviving object. Total Cost/IO is the 
expected total cost per inventory object. The probability of no survivors varies from .77 (with 8 total 
engagements per surviving object) to .99 (with 14 total engagements per surviving object). 

• If we deploy (and fire) one interceptor per object in the second layer, then the 

total cost is five interceptors per attacking object: we must deploy one 
interceptor per object in the second layer, which halves the third layer's 
original cost of eight to four, since only half of the objects are expected to 

penetrate to the third layer. 

• With either two or three engagements per object in the second layer (but still 

none in the first), the total "cost" is reduced to four—a total of four 
interceptors must be deployed per attacking object. We prefer three 
intercepts to two in the second layer because it gives a total of 11 (instead of 

10) intercepts per object at the same cost of four. 

• Four engagements per object in the second layer reduces the fraction seen by 
the last layer to 1/16, but such allocation also increases the expected total 

cost to 41/2, so it is not optimal. 

• The bottom half of the worksheet shows that resources can be optimized for 

all three layers by changing the first layer. If, for example, we deploy two 
interceptors per object in the first layer, we can further reduce the total cost 

to three interceptors per attacking object. That is, three interceptors per 

attacking object must be deployed to meet the stated demand of eight 
engagements per object in the third layer at least cost. This results in a total 
of 13 engagements per surviving object—two in the first layer, three in the 

second, and eight in the third. Again, we see more engagements per 

surviving object at lower cost. 



We conclude, then, that the optimal firing doctrine, when eight engagements are 

demanded in the last layer, is two per warhead in the first layer, three in the 

second layer, and eight in the last layer. 

Principal Cost Drivers 
Layering and Size of Attacker's Inventory 

The size of the interceptor inventory necessary to achieve a demanded 
probability of no survivors is highly sensitive to the existence of multiple look- 

shoots or layers. All other things being equal, the more the layers, the greater the 

reduction in inventory, and therefore cost. 

Figure S.l shows the ratio of the expected number of interceptors to the attack 

size, assuming that the probability of no survivors is held at greater than 90 
percent. As the figure shows, both the two- and three-layer systems require far 

fewer interceptors per attacking object than the single-layer system to achieve the 
desired outcome. And the ratio is quite insensitive to the total number of 
attacking objects. Increasing this number by a factor of 16 (from 256 to 4096 

attacking missiles) increases the ratio from 2.97 to only 3.09. 

MNDMR390-S.1 
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Figure S.l—Layering Reduces Sensitivity to Attack Size 



Demanding a Higher Probability of No Survivors 

With a multilayered defense, tightening the demand for no survivors can be 

achieved at a relatively small increase in total system cost. Take, for example, the 

case of 64 attacking objects against a defense having interceptors with SSPk of 

1/2, as shown in Table S.2. 

To attain a probability of success above zero in the second significant figure (i.e., 
.02) requires a total of four engagements per surviving object (i.e., any object that 

survives will have incurred a total of four engagements). In turn, the demand for 
four total engagements per surviving object requires that 2.0 interceptors be 
deployed per inventory object. A demand for a probability of no survivors of 94 
percent requires 10 engagements per surviving object—an increase of a factor of 
2.5 in terms of total engagements (10 divided by 4). However, as the table shows, 
the cost is increased to only 2.85—a factor of 1.425 (or 2.85 divided by 2). 

Increasing Interceptor Effectiveness 

Interceptor effectiveness, on the other hand, has a significant effect on overall 
inventory requirements and costs. For example, if the interceptor effectiveness or 
SSPk increases from 1/2 to 3/4 and all other factors are held constant, the 

demand on total deployed resources is reduced by a factor of two, because it 
takes two intercepts of .5 to have the same effectiveness as one interceptor of .75. 
On the other hand, if the SSPk degrades from .5 to .29, then the average demand 
on resources doubles: it takes two interceptors with SSPk of .29 to equal the 
effectiveness of one interceptor with SSPk of .5. Since we claim no knowledge of 

Table S.2 

Engagements per Surviving Object, Probability of 
No Survivors, and Total Cost per Attacker's 

Inventory Object for an Optimized 
Three-Layer Defense 

Probability 
E/SO of No Survivors Total Cost/IO 

4 .02 2.00 
6 .37 2.38 
8 .78 2.63 

10 .94 2.85 

NOTE: E/SO is total engagements incurred by any 
surviving object. Total Cost/IO is the total cost per attacker's 
inventory object. 



the actual SSPk that interceptors may attain in battle, we assume an SSPk of 1 /2. 

The methodology, being parametric, readily handles other values. 

Operational Cost Drivers 

This methodology can also accommodate operational factors, such as 
fractionation and multiple terminal defense sites, which affect the overall cost of 
a missile defense system. We quantitatively demonstrate that fractionation—the 

dispensing of submunitions or multiple warheads—can severely burden even a 

layered defense. Our analysis shows that an optimized layered defense should 

shift resources to the first layer, or "prefractionation," defense units because of 

the leverage provided by early intercept—and the cost of fielding systems to 
defend against the expanded number of attacking objects after fractionation. 

The analysis shows the effect on allocation and cost when multiple terminal 

defense sites are required in the last layer to adequately defend a designated 
"footprint." As in the case of fractionation, it is more effective to allocate 
interceptors in layers prior to terminal defenses; costs per inventory object also 

increase.2 

Hedging Against Uncertainties 

Clearly, there are limitations in using expected values to determine the number 
of interceptors to deploy for a particular campaign. Expected values are only a 
surrogate for probability distributions; the actual number of kills in a given 
defense layer will depend on the "luck of the draw." Therefore, we need to 
hedge against randomness: we must determine the inventory size that gives us 

confidence that all the interceptors will not be exhausted before the campaign is 

over. 

The parametric expected-value approach documented in this report lends itself 
nicely to simulation techniques that can be used to estimate the inventory size 
needed to provide such confidence. We used Monte Carlo techniques to explore 

the distribution of the number of interceptors needed to provide 90 percent 
probability that in any particular campaign none of the layers would run out of 

interceptors. For example, the simulation of 100 campaigns against 64 attackers 
suggested that a 20 percent increase in interceptors over the average number is 

required to achieve that level of confidence. 

2See Table 4.2. 



Mission Area Analysis 

We demonstrated how the methodology can be used to generate a "mission area 

analysis" or COEA (cost and operational effectiveness analysis) for theater 

missile defense that compared different programmatic options in terms of 

effectiveness, marginal costs, and buy-in costs. Using notional numbers for the 
cost of the options, we demonstrated the richness and relevance of such a 

framework in defining overall investment strategy in this mission area. 

Concluding Remarks 

Our main purpose in this research was to define a methodology for determining 

how to allocate resources among layers of a multilayered missile defense—a 

methodology that was simple in its logic but versatile enough to address 
complex planning considerations. In the process of this analysis, certain broad 

policy implications for future investment strategy became clear: 

• There are many benefits inherent in a multilayered architecture for missile 

defense. 

• The costs of such an architecture are substantial. However, a high level of 

effectiveness is achievable at far lower cost with multiple layers than with 

only a single layer. 

• There is great leverage in engaging attacking objects at the earliest possible 
stage. Because intercepts after fractionation are so difficult to accomplish 
and so costly, it is more desirable to intercept before fractionation. 

Historically, however, the emphasis in missile defenses has been focused on the 
terminal layer, where, our methodology shows, the leverage does not exist. But 

it does more than that—it quantifies in a simple parametric model the major 

factors that must be considered in designing an optimal multilayer missile 

defense. 
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1. Introduction 

The Iraqi use of Scud ballistic missiles in the 1991 Persian Gulf War dramatized 
the vulnerability of U.S. forces and in-theater infrastructure to theater ballistic 

(and cruise) missiles, and the grave threat that such weapons can pose to U.S. 
forces deploying to future major and lesser regional contingencies. The Soviet 
threat that was the impetus for many earlier U.S. investments in missile defenses 
has been replaced by a new operational environment, with a somewhat different 

set of constraints and considerations: 

• Missile defense operations are currently envisaged as part of a theater-level 
and essentially conventional campaign against adversaries who may have 

ballistic and cruise missiles. 

• Nevertheless, the threat of large-scale casualties caused by ballistic and 

cruise missiles—made possible by proliferating weapons of mass destruction 
(WMD)—could serve as a strong deterrent or constraint on U.S. actions, or 

even result in pressures for constraining U.S. forces before they achieve 

operational or strategic objectives. 

• For the foreseeable future, the likely size of missile arsenals held by potential 

adversaries—and the size of the barrages those adversaries will be able to 
generate—will remain orders of magnitude smaller than the size of the 

Soviet ballistic missile arsenal that shaped missile defense planning in the 
past. This makes it possible to plan defenses against somewhat smaller and 

more limited threats. 

• Current U.S. conventional campaign planning envisages gaining air 
superiority (and supremacy) over enemy airspace, enabling attacks against 

ballistic missile facilities and supporting infrastructure. By contrast, air 
superiority over the Soviet Union was not a realistic objective, a fact that 

greatly constrained or denied any opportunity for prelaunch, preburnout 

and prefractionation intercepts. 

• Past planning was somewhat more oriented toward midcourse/terminal 
defenses programmed under less austere budgets. For example, the U.S. 

Navy's AEGIS system was originally envisaged as providing midcourse and 
terminal defense primarily for Navy battle groups (and possibly ports), and 
the U.S. Army's Patriot system, for providing midcourse and terminal 
defense (primarily for deployed Army forces, air bases and ports, and 



population centers). By contrast, the current milieu places a premium on 
joint operations, synergism between the missile defense capabilities of 

various missile defense "pillars" (prelaunch, boost phase, midcourse, and 

terminal), and cost-effectiveness. 

These differences in the presumed operational and budgetary environments 

suggest that it is time to raise the following question: How should we think 
about the problem of allocating increasingly scarce resources among the various 

"pillars" of missile defense so that we can understand where the leverage is? 
This report describes an expected-value methodology for explicitly determining 

the optimal (least-cost) allocation of resources to various layers of a multilayer 

missile defense to counter theater ballistic missiles in a simplified analytic 
setting. The methodology also provides a means of illuminating the relationship 

between demanded outcomes and total resources that must be deployed to 
achieve those outcomes. The approach is offered as a starting point, an initial 
attempt to create a broader framework for evaluating the contributions of various 

operational concepts and force elements in countering theater ballistic missiles. 

The calculus is offered in the hope that additional work by others will help to 
clarify further the proper mix of resources among the various force elements 

attendant to this mission. 

Caveats 
We now wish to offer several caveats about the mathematical model we present. 

First, we have no illusions that the expected values we report will hold in any 
particular campaign. Generally, our calculus is based on a requirement of 
greater than 90 percent probability of success; if a person really believed the 
expected values that were mathematically derived would hold in a particular 

campaign, he should be willing to give nine-to-one odds that in an actual 
campaign no attacking objects will survive. The authors would give no such 
odds, however, because in addition to the uncertainties we assess, there are other 

operational factors that may further degrade expected results: 

• There are likely to be gaps in engaging objects, especially in the context of a 
stressful environment, where some objects may not receive the required 

number of engagements. 

• There will be correlated errors in kill assessment and engagement. For 
example, some objects will not be engaged because they are not seen at all— 

and correlated error could occur both within and even among layers. 
Furthermore, the "probability of a hit given an engagement" is not apt to be 



independent among the shots in a salvo, as an object "hit but not killed" by 
one interceptor may be a much tougher target for the next interceptor to kill. 

That is, the "kill given a hit" may be substantially reduced for objects that 

have been previously "hit" but not killed. 

Despite these misgivings about actual campaign outcomes, we believe the 

methodology to be quite useful in providing a way of thinking about the total 
concept of an optimized multilayered defense, in gaining insights regarding the 
allocation of resources in various layers, and in illuminating the total resources 
the defender must expend for any kind of a robust and effective theater defense. 
Furthermore, many of these degradation effects might be adequately captured by 
adjusting the values of parameters used in the model to conform with off-line 
analyses, or by adding new parameters, without compromising the elegance of 

the basic methodology. 

Organization of the Report 

This document is organized to present an approach to optimally allocating 

resources for multilayered missile defenses. 

• We begin in Section 2 by describing a simple parametric approach to 
determining how to optimally allocate resources among layers of a 

multilayer missile defense system. 

• In Section 3, we identify the principal cost drivers of missile defense and 

discuss how these factors affect the optimal allocation of resources. We 
present a number of excursions to show how the number of layers, size of the 
attacker's inventory, demanded probability of no survivors of an attacking 
force, and the likely effectiveness of interceptors in each layer affect the 

optimal allocation of resources. 

• In Section 4, we examine four operational factors that drive the optimal 
allocation of resources to missile defenses: the quality of kill assessment, 
fractionation, saturation and exhaustion, and multiple terminal sites to 

provide a "footprint." 

• In Section 5, we examine the impact of two cost-related considerations on the 

optimal allocation: interceptor costs and buy-in costs. 

• In Section 6 we provide an illustrative mission area analysis, also known as a 
"mission area COEA" (cost and operational effectiveness analysis). The 

focus is on demonstrating an approach for assessing macro-level 

programmatic options within a mission area. 



In Section 7, we show how uncertainty affects the size of the inventory of 

interceptors necessary to hedge against critical uncertainties. 

In Section 8, we provide concluding remarks. 



2. Determining the Optimal Allocation of 
Resources 

What Should Be Optimized? 

There is general agreement that a critical measure of outcome for theater missile 

defenses is the probability that none of an inventory of attacking warheads 
survives the missile defense system—"the probability of no survivors."1 This 

probability extends over the duration of the campaign—not just a single attack. 

This has the benefit of being both operationally oriented and providing a clear 

criterion for assessing the relative merits of different operational and system 

concepts. 

The first purpose of this report is to provide basic insights into how to determine 
the optimal allocation of resources across the layers of theater missile defense- 
optimal in the sense of achieving a given measure of outcome (i.e., a stated 

probability of no survivors of an attacking force) at least cost. This section 
demonstrates a simplified version of the parametric expected-value approach for 

determining such an allocation. 

Definitions 

We begin by defining some key terms: 

• We consider the term "layer" to be synonymous with a separate "look- 
shoot," and not necessarily tied to the conventional association with separate 

phases of missile defense (e.g., prelaunch, boost, postboost, midcourse, and 

terminal). One implication of this is that there needn't be a single "look- 

shoot" in each phase; multiple "look-shoots" may (and as we will see, 

perhaps should) take place within a particular phase. 

• The single-shot "probability of kill" (SSPk) is defined as the conditional 
probability that an object will be killed, given an engagement by a single 

interceptor. 

1This is similar to one of several effectiveness criteria discussed in A. Ross Eckler and Stefan A. 
Burr, Mathematical Models of Target Coverage and Missile Allocations, Alexandria, VA: Military 
Operations Research Society, 1972, pp. 3-6, and in Ashton B. Carter, "BMD Applications: 
Performance and Limitations," in Ashton B. Carter and David N. Schwartz (eds.), Ballistic Missile 
Defense, Washington, D.C: The Brookings Institution, 1984, pp. 98-181 and especially pp. 99-105. 



• We use the term "interceptor" to connote a defending system available to 

engage an attacking object. 

• We will use the term "engagement" as meaning a single interceptor fired 

against a single attacking object. 

• "Engagements per presented object" (E/PO) is the number of engagements 

an object incurs in a layer if it reaches that layer. 

• "Total engagements per surviving object" (Total E/SO) is the total number of 
engagements that would have been incurred by any object that leaked 

through the entire system. 

• "Cost per inventory object" (Cost/IO) is the expected total cost in 

interceptors that would be fired at each of an inventory of attacking objects. 

Finding the Optimal Allocation of Resources 

Table 2.1 presents an illustrative worksheet for allocating resources to a three- 

layer theater missile defense.2 

Table 2.1 

Worksheet for Determining the Least-Cost Defense Allocation 

Laye r 

Total 

E/SO 

1st 2nd 3rd Total 

/ E/PO c / E/PO c / E/PO c Cost/IO 

1 0 1-0=0 1 8 1-8=8 8 8 

1 1 1 1/2 8 4 9 5 

1 2 2 1/4 8 2 10 4 

1 3 3 1/8 8 1 11 4 

1 4 4 1/16 8 1/2 12 41/2 

1 0 0 1 3 3 1/8 8 1 11 4 

1 1 1 1/2 3 3/2 1/16 8 1/2 12 3 

1 2 2 1/4 3 3/4 1/32 8 1/4 13 3 

1 3 3 1/8 3 3/8 1/64 8 1/8 14 31/2 

NOTE: SSPk = 1/2, one cost unit per assigned interceptor, for all layers. Preferred 
allocations in bold, /is the fraction of the initial attacking force leaking to that layer, c is the cost 
per interceptor, assumed to be identical (1) for all layers. E/PO is the number of engagements per 
presented object, and Total E/SO is the total number of engagements per surviving object. Total 
Cost/IO is the expected total cost per inventory object. 

The probability of no survivors varies from .77 (with 8 total engagements per surviving 
object) to .99 (with 14 total engagements per surviving object). 

2For many of the examples used in this report, parameter values (e.g., SSPk of 1/2) have been 
chosen to illustrate a concept and point the reader's thinking in the right direction. Computations 
and derivation of more general "rules" for cases with other parameter values would likely be 
somewhat messier. 



The table portrays the case where the single-shot probability of kill (SSPk) in each 

layer is 1/2, and costs are treated in terms of the required interceptor inventory.3 

We assume, for this example, a demand that there be eight engagements per 

attacking object in the last (third) layer. That is, for illustrative purposes, the 

problem is initially structured such that the number of engagements per 
attacking object desired in the last layer is specified, and the optimal allocation in 

the previous layers is determined. This most simple formulation will later be 

discarded in favor of a less restrictive one. 

The worksheet has three columns for each layer. The first column, designated 

"/," is the fraction of the initial attack that penetrates to that layer. The second 
column, designated "E/PO," is the number of engagements incurred by each 
object (missile or warhead) presented to that layer. And the third column, "c," is 
the computed deployment cost per attacker's inventory object for that layer—this 

being the product of the fraction of the attack seen by that layer and the number 

of engagements incurred by the object in that layer.4 The column titled "Total 
E/SO" totals the number of engagements incurred by any attacking object that 
survives through the last layer, and represents the sum of the E/POs for the three 
layers. The "Total Cost/IO" is the total cost per inventory object—the sum of the 
costs for the three individual layers, and represents the expected total number of 
interceptors the defender must deploy for each object the attacker presents to the 

defense over the campaign. 

Optimizing Among the Last Two Layers 

Let us first consider several of the possible allocations of interceptors to the 
second layer when the last layer is fixed at eight engagements per surviving 

object. As shown in Table 2.1: 

• If no interceptors are assigned in the first or second layers (row one of the 

table), the expected cost remains eight, because the third layer sees the 

entirety of the attack. 

• If there is no allocation in layer one, and just one engagement per presented 
object is allocated to the second layer, the cost is one in that layer, since it 
sees the entire attack. Because only 1/21 = 1/2 of the attack reaches the third 

\i the interests of simplicity of presentation, we initially assume equal SSPk and per- 
engagement costs in all layers, and perfect kill assessment. The required interceptor inventory will be 
used initially as a surrogate for cost; we will later impute a relationship between interceptors and 
dollars, so that programmatic and budgetary costs may be considered more explicitly. 

4With an equal cost of one unit per interceptor for all layers, the number of interceptors used is 
identical to the inventory cost. 



layer, the cost for that layer is halved, for a third-layer cost of four. Thus, the 

expected total cost per inventory object drops from eight to five, while the 

total number of engagements per surviving object rises from eight to nine. 

• If two engagements per object are allocated to the second layer, the third 
layer sees 1/22 = 1/4 of the attack, resulting in an expected 10 engagements 
per surviving object at an average total cost per inventory object of just four. 

Again, we see more engagements per surviving object at lower cost. 

• However, if three interceptors per object are bought for the second layer, 
1/23 = 1/8 of the initial attackers penetrate to the last layer, and the missile 

defense system can realize 11 engagements per object for that same cost of 
four. Since we get one more engagement per surviving object (i.e., it yields a 

higher probability of no survivors) at the same expected total cost, we prefer 

this allocation to only two engagements per object in the second layer.5 

• Four engagements per object in the second layer reduces the fraction seen by 

the last layer to 1/24 = 1/16, but it increases the expected total cost to 41/2. 
Thus we see that we are moving away from the optimal least-cost allocation 
by going beyond three engagements per presented object in the second layer. 

Optimizing for All Three Layers by Changing the First Layer 

Similarly, in the bottom half of the worksheet, we determine the optimal number 
of engagements per object for the first layer of the three-layer missile defense 

system, given the already optimized two-layer system, consisting of the second 

and third layers. As can be seen: 

• We begin with the optimal allocation for the second and third layers we just 

considered, repeated in the first line of the three-layer system: no 
engagements in the first layer, for an expected total cost of four per inventory 

object. 

• If we provide one engagement per object in the first layer, the second layer 

sees only 1/2 of the initial attacking force and the expected total cost falls 
from four to three per object. Note now that there are 12 total engagements. 

Again, we see more engagements per object at lower cost. 

cases 
'Although we will not describe it further, there is an important recursion in evidence here: for 

cases where the SSPk is 1/2, the optimal number of engagements per object in the second layer is the 
IOK to the base two of the number in the last layer. Furthermore, while not proved here, it can be 
shown that by fixing the probability of no survivors and leaving the total inventory of interceptors 
unconstrained, our Ixpected-value methodology produces estimates of the expected number of 
interceptors expended that are identical to those generated using the exact bmomial expansion. That 
is, the simplified framework we offer does not sacrifice accuracy. 



• If we provide two engagements per object, 1 /4 of the initial attack survives 
to the second layer, and we can get a total of 13 engagements per object for 

the same cost of three. Since we can get one more engagement at no 

additional cost, we prefer this solution to only one engagement in the first 

layer. 

• If we were to provide three engagements per attacking object in the first 

layer, the expected total cost would rise from three to 31/2 units. Hence, 
two engagements per object in the first layer is the optimum solution. 

We conclude, then, that the optimal firing doctrine, when eight engagements are 
demanded in the last layer, is two engagements per warhead in the first layer, 

three engagements per warhead in the second layer, and by assumption, the 
demanded eight engagements in the last layer, for a total of 13 engagements per 

surviving object. In the course of achieving the least-cost allocation, we 
encountered a somewhat striking and counterintuitive phenomenon: as we 

approached the optimal allocation, the number of engagements for each 

surviving object (a measure of the effectiveness of the missile defense system) 

rose, while the expected cost per attacking warhead decreased. 

We can mathematically show that the function for cost per attacking object is 

convex and has a unique rninimum point, as can be seen in Figures 2.1 and 2.2, 
which portray the cost per attacking object as a function of the number of 
engagements per object in the first layer. Figure 2.1 is for the two-layer case 
described above in which the second layer is fixed at eight engagements per 
object, and Figure 2.2 is for the three-layer case in which the second layer is fixed 

at three and the last layer is fixed at eight engagements per object.6 

Recursion in the Optimal Allocation 

Having described a procedure for optimally allocating resources when the last 
layer is fixed,7 we will now drop this formulation and show how to determine 
the optimal allocation of a fixed number of engagements per attacking object. 

Consider Table 2.2, which portrays an interesting recursion in the optimal 

^The function that is being graphed in Figure 2.1 is x + dqx, where d is the integer number of 
engagements per object demanded in the last layer and x is the integer number of engagements per 
object in the first layer. The function being graphed in Figure 2.2 is x + yf+ dqx+y, where d is as 
above, x is engagements per object in layer one, and y is engagements per object in layer two. 

7The results in this report were either generated or verified with a spreadsheet model 
implemented in Microsoft Excel that determines the least-cost allocation by performing an exhaustive 
search of possible allocations while taking into account the number of layers, SSPk and cost of 
interceptors in each layer, and other key parameters. 
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RANDMR390-2) 

SSPk= 1/2 in each layer 
Last layer fixed at 8 engagements per object ] 

1 

Optimal allocation to first layer is 3 

I 
2 3 4 5 6 

First-layer engagements per object 

Figure 2.1—Cost Implications of Various Allocations to First Layer, Two-Layer System 

5   - 

RANDMH390-2.2 

SSPk= 1/2 in each layer 
Last layer fixed at 8 engagements per object, 
second layer fixed at 3  

Optimal allocation to first layer is 2 

1 2 3 

First-layer engagements per object 

Figure 2.2—Cost Implications of Various Allocations to First Layer, Three-Layer System 
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Table 2.2 

An Illustration of Recursion in the Optimal Allocation 

Engagements per Presented Object 

1st Layer 2nd Layer 3rd Layer Total E/SO 

1 

Total Cost/IO 

0 0 1 1.00 

1 1 2 4 2.00 

1 2 4 7 2.50 

2 3 8 13 3.00 

2 4 16 22 3.25 

2 5 32 39 3.50 

2 6 64 72 3.75 

3 7 128 138 4.00 

NOTE: SSPk = 112, one cost unit per assigned interceptor, for all layers. Total 
E/PO is total engagements per presented object. Total Cost/IO is the expected total 
cost in interceptors for each of the attacker's inventory of attacking objects. 

allocation of resources to three-layer missile defenses for various demanded 

numbers of total engagements per object.8 

As can be seen from the table: 

• There is a clear mathematical relationship among the number of 
engagements in the three layers for those "canonical cases" in which the 
third-layer allocation is a power of two: the number of engagements per 

surviving warhead in the second layer is the log to the base two of the 
number in the third layer,9 and the number of engagements in the first layer 

is the integer part of the log to the base two of one plus the number in the 

second layer.10 

• As the total number of engagements rises, it can be seen that the cost flattens 

out. 

Some readers may believe that a salvo size of eight or even four engagements per 
object presented to a layer—or seven or more total engagments per surviving 
object—is an excessive number of engagements. There are two important points 
to be made on this matter at this point in our presentation.11 First of all, if we 
demand a high confidence of zero leakers, we may have little choice but to use 

8The fourth row, for example, corresponds to the optimal allocation in Table 2.1. 
9This relationship holds for the case of SSPk =1/2. 
10Furthermore, we can solve for the number of engagements in the first layer explicitly. Let x be 

the number of engagements per object in the first layer, y be the number of engagements in the 
remaining layers, and q be 1 - SSPk. We desire to minimize x + y ■ qx. Taking the first derivative and 
setting it to zero, we get 1 + y ■ qx ■ ln(q) = 0. Rearranging, we find that x = (1 / ln(<j)) • ln(-l/(y • ln(q))). 
Since the function is convex, the optimal integer solution is an immediate neighbor of this value. 

nLater we will talk about a third: the effect of uncertainty. 
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salvos to achieve that level of confidence. Second, the methodology is in fact 

parametric, and it is for illustrative and pedagogical reasons that we have 
generally assumed a relatively modest SSPk of 1/2 for interceptors. As we will 

later show, more effective interceptors can substantially reduce the total number 

of engagements per surviving object required to achieve a demanded level of 

confidence of zero leakers. 

Having described some of the characteristics of an optimized multilayer missile 

defense, we will now restate the problem in two ways that are more relevant in 

an operational context: (1) determining the least-cost firing doctrine and 

allocation of resources to achieve a demanded outcome (i.e., a demanded 
probability of no survivors), and (2) determining the optimal firing doctrine (i.e., 

that yielding the highest probability of no survivors) given a constrained 

interceptor inventory. 

The Optimal Allocation to Achieve a Demanded 
Outcome 

As described in the example of Figure 2.3, the first of these two optimization 

problems seeks to find the least-cost solution to achieving a demanded 

probability of no survivors. 

RAH0MR390-2.S 

Let: 

SSPk= 1/2 for all layers, 

W= the number of initial attacking warheads = 64, 

cost per interceptor = 1 for all layers, 

p0(W)   90 percent, where p0{W) is the probability of no survivors, 

given W. 

Fix the number of layers. 

Find least-cost allocation to achieve the stated outcome. 

Figure 2.3—Achieving a Demanded Level of Outcome 



13 

Consider the case of 64 attacking warheads against a three-layer missile defense 
system, an SSPk of 1/2 for each layer,12 and a demand for greater than 90 percent 
probability of no survivors.13 The first step in the problem is to determine how 

many engagements against each surviving object are required to achieve the >90 

percent probability of no survivors.14 This is shown in Figure 2.4.15 

In the cases where the SSPk for each layer is the same, the demanded probability 

of no survivors can readily be translated into the total required number of 

RANDMH390-2* 

What is the least integer numbers of engagements per attacking object 

that provides >90 percent forP0( W) given W, where 

W= the number of initial attacking warheads = 64, 

SSPk= 1/2 for all layers? 

Po (w) -11 ~ 0 " SSPk)s]w= the probability of no survivors. 

By solving for S analytically, we find that S = 9.2. 

Since we want an integral number of engagements per surviving 

warhead, we take the first integer larger than 9.2, or S = 10. 

Figure 2.4—Probability of No Survivors and Required Engagements per Object 

12To repeat a point made earlier, SSPk is initially asserted to be identical to the single-shot 
probability that a target does not survive any given engagement. 

13We have arbitrarily chosen greater than 90 percent probability of no survivors as our criterion 
for the examples in this report. The methodology is, however, applicable to any desired level of 
confidence. 

14The number of engagements against each surviving object represents what the defense wants 
to ensure it allocates against any object that might leak through. 

15We can solve analytically using the formula 

S = In (1 - P0
1/W)/ln (1 - SSPk), 

where 
S = the required number of shots, 
P0 = the demanded probability of no survivors, 
W = the number of attacking objects, and 
SSPk = the single-shot probability of kill. 



14 

engagements against each surviving object of the original attack. In the stylized 

case portrayed in Figure 2.4, the demand for >90 percent probability of no 

survivors against 64 warheads translates to a requirement for 10 total 
engagements of each surviving object (i.e., any warhead that survives all layers 

of defenses will have incurred 10 engagements). 

If all engagements were incurred in a single layer, this would generate a demand 
for an expected total of 640 interceptors (64 objects times 10 engagements each), 
but as we saw earlier, by making use of multiple layers we are able to lower the 

required number of deployed interceptors and, as a consequence, the size of the 
budget necessary to buy that inventory of interceptors.16 The question is: how 

should the ten engagements per surviving warhead be allocated among the 

layers to yield the lowest cost? 

To determine the optimal allocation for a two-layer system, we need to take a 
step back for a moment. We have discovered that in simple two-layer systems, 
for certain total demanded numbers of engagements per object (represented here 

by n and called "transition numbers"), there are two allocations, both of which 
yield the same least-cost integral solution.17 For example, as can be seen in Table 
2.3, a two-layer system with a demand for nine total engagements per object 

surviving the defense is at a transition number: two allocations—two 
engagements per object in the first layer and seven in the second layer (or in 

shorthand, 2/7) and three in the first layer and six in the second layer (or 3/6)— 
generate the same least-cost solution of 3.75 interceptors required for each of the 

attacker's inventory of objects. 

Figure 2.5 provides the derivation for transition numbers for the case where SSPk 

is 1/2 and the costs are equal for both layers.18 

1&AS we will show in Section 5, to hedge against uncertainty in "the luck of the draw," we will 
want to field more than the expected inventory size of interceptors. So as not to belabor the point, 
suffice it to say that this applies to all of the optimizations presented herein. 

17For three-layer systems, there are "transition numbers" which yield three least-cost solutions 
under certain circumstances. In this report, we have restricted our search for the least-cost firing 
citrine to Sose firing doctrines that result in both an integer number of engagements per object in 
Syer and an inteler number of interceptors deployed in each layer. It is possible however, to 
have a nonintegral firmg doctrine. For example, 1.5 engagements per presented object can be 
achieved by putting one engagement on half of the presented objects and two engagements per 
presented object on the other half. 

18In general, if x interceptors per attacking object are allocated in the first layer, and jr per object 
in the second layer, the total expected number of interceptors per attacking object is given by x + q y, 
where q is 1 - SSPk The transitions for a two-layer system occur where 

« = s + (l-9s+1)/<?s(l-^ 

for which both s and n are integers. 
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Table 2.3 

Required Interceptors for a Two-Layer System 

Layer 1 E/PO Layer 2 E/PO Total Cost/IO 

0 9 9.0 
1 8 5.0 
2 7 3.75 
3 6 3.75 
4 5 4.31 
5 4 5.13 
6 3 6.05 
7 2 7.02 
8 1 8.0 
9 9 9.0 

NOTE: SSPk = 1/2, one cost unit per assigned interceptor, 
for all layers. E/PO is engagements per presented object. 
Total Cost/IO is the expected total cost in interceptors for each 
of the attacker's inventory of attacking objects. 

MHDMR390-2S 

Let: 

n = the total demanded number of engagements per object, 

SSPk= 1/2 for all layers. 

At a transition number, the least-cost solution results with 

both an allocation of Sto the first layer and n-SXo the second, and 

S+1 to the first layer and n- S-1 to the second. Specifically: 

S[2S+1] + 2[n- S] = 2S+1 [S+ 1] + n- S- 1 

2n-2S=2s+1 + n-S-1 

n = 2s+1 + S-1. 

Find, for example, the value of n for the transition from S = 1 to S = 2: 

n = 2s+1 + 1-1 

n = 22 = 4. 

Figure 2.5—Derivation of Transition Numbers for Two-Layer Defense 

For these numbers, the least-cost solution may be achieved either by an allocation 

of S engagements in the first layer and n-S engagements in the second layer, or 

by an allocation of S+l engagements in the first layer and n - S -1 in the second. 
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Table 2.4 identifies transition points calculated from the formula just presented, 

for the case of SSPk of 1/2 and equal costs per interceptor in all layers. 

At these points the number of engagements assigned to the first layer in an 

optimal allocation is incremented by one, and for every value of n between these 
transition numbers the second-layer engagements per object are incremented by 
one. The optimal equal-cost integral alternative firing doctrines are presented in 
Table 2.4's last column, in the form of first-layer allocation/second-layer 

allocation.19 

To illustrate, let us return to the problem of how to optimally allocate ten total 

engagements per surviving object. The optimal solution is to allocate three 

engagements per object in the first layer and seven in the second layer, that is, 

3/7. The number three is gained from the table since the demand is for greater 

than nine intercepts per surviving object. The number seven is derived by 
subtracting three from ten. Table 2.5 provides least-cost allocations for from one 
to twenty total engagements per surviving object for a two-layer defense. 

The Optimal Allocation of a Constrained Inventory or 
Budget 

Consider Figure 2.6, which illustrates the second type of optimization problem- 

finding the allocation that maximizes the probability of no survivors given a 
constrained inventory or budget. The figure assumes a three-layer defense 
system with a total available inventory of 192 interceptors, and 64 attacking 

Table 2.4 

Transition Numbers for a Two-Layer System 

First-Layer Optimal Equal-Cost Integral 
Allocation (S) Transition Number n Allocations (first/second layer) 

0 20+1 + o -1 = 1 0/1 or 1/0 
1 21+1 + 1-1=4 1/3 or 2/2 
2 22+l + 2-1=9 2/7 or 3/6 
3 23+1 + 3 -1 = 18 3/15 or 4/14 
4 24+1+4-1=35 4/31 or 5/30 
5 25+l + 5 -1 = 68 5/63 or 6/62 
6 26+1 + 6-l = 133 6/127 or 7/126 
7 27+1 + 7-1=262 7/255 or 8/254 

NOTE: SSPk = 1/2, one cost unit per assigned interceptor, for all layers. 

19The authors wish to thank RAND colleague David Vaughan for his ingenious and elegant 
derivation of what we have called "transition numbers/' which contributed greatly to our 
understanding of the phenomenon. 
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Table 2.5 

Optimal Integral Firing Doctrines for Various Total Engagements 
per Presented Object, Two- and Three-Layer Defenses 

Optimal Integral Firing Doctrines 

Total E/PO Two-Layer Three-Layer 

1 0/1 or 1/0 0/0/1,0/1/0, or 1/0/0 
2 1/1 0/1/1,1/0/1, or 1/1/0 
3 1/2 1/1/1 
4 1/3 or 2/2 1/1/2 
5 2/3 1/1/3 or 1/2/2 
6 2/4 1/2/3 
7 2/5 1/2/4 
8 2/6 1/2/5 
9 2/7 or 3/6 1/2/6 
10 3/7 1/3/6 or 1/2/7 
11 3/8 1/3/7 
12 3/9 2/3/7 
13 3/10 2/3/8 
14 3/11 2/3/9 
15 3/12 2/3/10 
16 3/13 2/3/11 
17 3/14 2/3/12 
18 3/15 or 4/14 2/3/13 
19 4/15 1/2/14 
20 4/16 2/4/14 or 2/3/15 

NOTE: SSPk = 1/2, one cost unit per assigned interceptor, for all layers. 
Total E/PO is the total engagements per presented object. 

objects, thus producing a ratio of inventory engagements to attacking warheads 

of 192+ 64 = 3.0. 

Following the figure, the process by which the allocation is done is as follows: 

• The first layer is allocated 128 (i.e., 2/3 times 192) of the available 

interceptors. With two engagements per object in the first layer, an expected 

1/22 = 1/4 of 64 or 16 objects penetrate to the second layer. 

• In the second layer, we have a ratio of JR = 4.0 (64 available interceptors for 16 

surviving warheads). The algorithm states that we should allocate (4 -1)/4 

= 3/4 of the remaining 64 interceptors (48) to the second layer, for an 

expected total of three engagements per warhead, and the remaining 64-48 

= 16 engagements to subsequent layers. 

• In the third layer, with 16 engagements available and 1/32 • 64 = 2 objects 

penetrating to the third layer, the ratio of engagements to warheads is 

16/2 = 8. 
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BAHDMR390-2.6 

Let: 

/ = the number of deployed interceptors = 192, 

W= the number of initial attacking warheads = 64, 

R = the ratio of l/W= 3.0, 

SSPk= 1/2 for all layers. 

Then allocate: 

(f?-1)/f?=2/3 of 192 or 128 interceptors to the first layer, and 

1/3 of 192 = 64 for the remaining layers (two and three). 

Repeat the process for the 16 attackers that are expected to survive into 

the second layer (with R now equal to 64/16 = 4): 

(R -1 )IR = 3/4 • 64 = 48 to the second layer, and 

MR = 1/4, therefore 1/4 • 64 = 16 to the third layer. 

Figure 2.6—Allocating a Constrained Inventory to a Three-Layer Defense 

We now have a total of 13 engagements per surviving object—two in the first 

layer, three in the second layer, and eight in the third—for a probability of no 

survivors of (1 - 0.513)64 = 99 percent. When the effectiveness of all layers is equal 
at an SSPk of 1/2, interceptors cost the same for all layers, and there are more 
interceptors than attacking objects, the allocation of resources according to the 
algorithm of (R - 1)/R provides the optimal allocation (i.e., the highest 
probability of no survivors) given the available inventory of interceptors.20 

Some Simple Heuristic Methods Based on Exponential 
Approximations 

We have thus far presented several simple techniques for solving the two 

optimization problems of interest—finding the least-cost solution for a 
demanded number of engagements per surviving object, and finding the 
allocation that maximizes the probability of no survivors given a constrained 
inventory or budget. We now develop a simple technique for simplifying 

20We have empirically established the optimality condition for the case where SSPk is 1 /2; it is 
our hope that it might be extended beyond this simple form to the more general case. 
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computations with respect to the "probability of no survivors." The technique 

involves: 

• Using exponential approximations to compute the probability of no 

survivors of an attacking force. 

• Identifying the necessary "margin" of required engagements per object to 

maintain a demanded level of outcome given an attacking force size. 

As will be seen later in this report, these techniques can be quite useful and 
important in simplifying the analysis of optimum allocation of resources to 

multilayered defenses.21 

Approximating the Probability of No Survivors 

As described in Figure 2.7, the exponential approximation may be used to 
approximate the probability of no survivors of an attacking force of missiles.22 

Table 2.6 describes the number of engagements required for greater than 90 

percent probability of no survivors when interceptor SSPks are 1/2 and 3/4. 

"Margins," the "Rule of Four," and the "Rule of Two" 

Consider Figure 2.8, which shows how to use the exponential approximation to 
estimate the "margin" (the difference between the total number of engagements 
per object and the exponent of two that estimates the size of the attacking force) 

necessary to maintain a given probability of no survivors. For SSPk of 1/2, to 

achieve greater than 90 percent probability of no survivors, the number of 
engagements per surviving object must be four more than the log of the number 

of attackers to the base two, or a "margin" of four. 

If the number of objects is 64 (26), for example, then in order to have greater than 
90 percent probability of no surviving objects, the number of engagements per 
surviving object must be ten (6 + 4). This, then, is the "rule of four." If the SSPk 
is 3/4 (rather than 1/2), to have greater than 90 percent probability of no 

21That is, these approximations can simplify "back-of-the-envelope" computations; obviously, 
given the availability of calculators, microcomputer spreadsheets, and other tools, it is a trivial matter 
to work out the exact calculations. 

^We caution the reader that exponential approximations can be poor in some cases, for 
example, when the number of attacking objects is very small. 
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RANDMR390-2.7 

The probability of no survivors is given by: 

PQ(W) = (1-e\-SSPk)s)w 

where S= the total number of engagements per attacking object, and 

W= the total number of attacking objects. 

This is approximated by e-MW-ss/*)* or, letting 
■I \ogaWS 

a = , equivalents by e-a 

With SSPk= 1/2,64 attackers, and 6 total engagements per attacker: 

(1-(1-1/2)6)64 = 0.365. 

Using the exponential approximation, we find: 

e-{26/26) _ e-1 = 0.368 - 0.365. 

Figure 2.7—Using the Exponential Approximation to Estimate the Probability of 
No Survivors 

Table 2.6 

Engagements Required to Achieve >90 Percent Probability 
of No Surviving Objects 

Total E/SO 

Attacking Objects SSPk = 1/2 SSPk = 3/4 

8(23) 7 4 

16 (24) 8 4 

32 (25) 9 5 

64 (26) 10 5 

128 (27) 11 6 

256 (28) 12 6 

512 (29) 13 7 

1024 (210) 14 7 

2048 (211) 15 8 

4096 (212) 16 8 

NOTE: Total E/SO is the total number of engagements per 
surviving object. 
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RANDMH390-28 

P0(W) = 0-0-SSPk)s)w. 

Where SSPk= 1/2, the expression reduces to: 

P0(W) = [1 - l^spor, if 1/2S is a small number, we have: 

P0(W) ~ e-<M2s). 

Now rewriting Was 2l092vv
i 

Now find the smallest integral value of the expression S- log2 Wthat yields 

>.90 for P0(W). That value is 4. That is, if S- log2 Wis 3, 

then PQ{W) is .882. But if S- log2 Wis 4, then P0{W) is .939, and 

we find that S= log2 W+ 4. 

Figure 2.8—Derivation of the "Rule of Four" 

surviving objects the number of engagements per surviving object must be two 
more than the log of the number of objects to the base four—the "rule of two."23 

Section Summary 

The principal insight from the discussion to this point is that it is possible to use a 

relatively simple parametric formulation for numerically determining—in a 
simplified analytic setting—the optimal allocation of resources to various layers 
in a multilayered defense, and to do this taking into account a small number of 

factors. 

The purpose of the next section is to examine more systematically the effects on 

the optimal firing doctrine, allocation among layers, and cost per object of 

various factors. 

C 

^In the most general case, we find that P0(W)~e-w^ ' sspk) . Obviously, these "rules" are tied 
to specific SSPks, and for other SSPks, other "rules" would apply. For example, an SSPk of 7/8 would 
give us the "rule of one." For "back-of-the-envelope" calculations, however, there may be benefits in 
using SSPks that readily translate to "rules" (e.g., 1/2,3/4, and 7/8). 
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3. The Principal Cost Drivers of Missile 
Defense 

By now the reader should be familiar with the general logic of the methodology 

described in this report. The purpose of this section is to gain a better 
understanding of the factors that drive required inventory size and cost. We will 
examine the relative importance of four specific factors in sizing a missile defense 

system:1 

1. the presence of layering; 

2. the size of the attacker's missile inventory; 

3. the demanded probability of no survivors; and 

4. the effectiveness (SSPk) of interceptors in each layer. 

Layering 

The following "base case"2 will be used as a point of comparison throughout this 

section: a three-layer missile defense system defending against 64 attacking 
objects, with identical SSPk of 1/2 for interceptors in each layer, perfect kill 
assessment assumed, a cost of one for engagements in each layer, and a demand 
for >90 percent probability of no survivors (i.e., a demand for 10 engagements for 
each surviving object). Table 3.1 presents various integral firing doctrines in the 

domain of interest, and their costs.3 

As shown, among the several optimal (least-cost) solutions is one engagement 

per object in the first layer, two engagements per object in the second layer, and 

1In Section 4 we will examine four more factors: kill assessment, fractionation, saturation, and 
"footprint," before assessing the impact of differences in marginal (per interceptor) and buy-in costs. 

^Designated case A in Table A.l in the Appendix to this report. 
3An integral firing doctrine is one that allows only integer values for the number of 

engagements per object in each layer. 
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Table 3.1 

Illustrative Firing Doctrines and 
Expected Total Inventory Costs 

Firing Expected Total 
Doctrine Inventory Cost 
0/0/10 640 

0/1/9 352 
0/2/8 256 
0/3/7 248 
0/4/6 280 
0/5/5 330 

1/0/9 352 
1/1/8 224 
1/2/7 184 
1/3/6 184 
1/4/5 202 
1/5/4 228 

2/0/8 256 
2/1/7 200 
2/2/6 184 
2/3/5 186 
2/4/4 196 

NOTE: 64 attacking objects presented 
to a three-layer defense system with ten 
total engagements per surviving attacking 
object. SSPk= 1/2 for each layer. Least- 
cost optima reported in italics. 

seven engagements per object in the third layer—or, in shorthand, 1/2/7—for an 
expected total inventory requirement of 184 engagements and a cost of 184:4 

• One engagement against each of the 64 attacking warheads in the first layer, 

for a total of 64 engagements; 

• Two engagements for each of the 32 warheads that on average survive to the 

second layer, for a total of another 64 engagements; and 

• Seven engagements for each of the eight warheads that on average survive 

the second layer to the third layer, for a total of 56 engagements. 

The most important point is that this cost of 184 engagements is significantly (71 
percent) lower than the 640 engagements that would have been required if only a 
single layer were used.5 Thus, with three layers, we can achieve the demanded 

4 As can be seen from the table, there are three alternative integral firing doctrines that yield an 
identical total cost of 184 (reported in italics), but none that produces a lower-cost solution. These 
three allocations are 1/2/7,1/3/6, and 2/2/6. These ties suggest that ten total engagements per 
object is a "transition number" for a three-layer system with an SSPk of 1/2 and equal cost of one in 
all layers. 

5Case B in Table A.l. 
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ten engagements per surviving warhead at less than a third of the cost of a one- 

layer architecture. In short: 

•    The size of the interceptor inventory necessary to achieve a demanded 

probability of no survivors is highly sensitive to the existence of multiple 
look-shoots or layers—multiple layers can dramatically reduce the size of the 
inventory of interceptors required to achieve a stated level of outcome—and all other 

things being equal, the more layers, the greater the reduction in cost. 

Size of the Attacker's Inventory 

Figure 3.1 portrays the relationship between the expected total number of 
interceptors a defender must deploy to attain a probability of no attacking 

survivors of greater than 90 percent and the size of the attacker's missile 
inventory. Take, for example, an attacking force of 256 (28) missiles. We must 
now have 12 engagements per surviving object—the rule of four. For the case of 

a one-layer system this demands an inventory of approximately 3000 
interceptors.  However, a three-layer system generates a requirement for 760 

interceptors (a ratio of about three to one). 

Figure 3.2 further emphasizes this point, showing the ratio of the expected 
interceptors expended to the attack size for optimized layered defenses when the 

number of attacking objects is varied, and the demanded probability of no 
survivors is held at greater than 90 percent.6 As can be seen, both the two- and 
three-layer systems require far fewer interceptors per attacking object to achieve 

the demanded outcome than does a one-layer system. 

Similarly, from Table 3.2 we can see that increasing the number of attacking 
objects by a factor of 16 (from 256 to 4096) increases the "ratio" by a factor of only 

about 1 percent (from 2.97 to 3.09). This again stems from the presence of more 

than one layer—with one layer, the ratio would have gone from 12 to 16. 

The last two figures and the table demonstrate that for multilayered defenses, the 
"ratio" is quite insensitive to the total number of attacking objects. That is, the 

expected total number of interceptors to be deployed varies approximately 

6As mentioned earlier, we would actually want to deploy more interceptors to hedge against 
uncertainty in the "luck of the draw," as we will discuss in Section 5. 
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Table 3.2 

Required Ratio of Defenders to Attackers 

Number of Required Ratio: 
Number of Engagements Defenders to 
Attacking Objects per Survivor Attackers 

64 (26) 10 2.875 
128 (27) 11 2.938 
256 (28) 12 2.969 
512 (29) 13 3.000 
1024 (210) 14 3.031 
2048 (211) 15 3.063 
4096 (212) 16 3.094 

NOTE: Three-layer defense system, SSPk = 1/2 for each layer. 
Probability of no survivors >90 percent. 

linearly with the number of attacking objects, since it is the product of the 

number of attacking objects and the required "ratio" of defenders to attackers. 

Multiple layers serve to reduce the ratio, but it remains necessary to know the 

size of the adversary's arsenal in order to size our defenses. 

Demanded Probability of No Survivors7 

Similarly, multiple layers have the property of greatly reducing the sensitivity of 

the cost to a demand for a higher probability of no survivors. As can be seen in 

Figure 3.3, with a one-layer system, as the total number of engagements per 

object increases (thus raising the probability of no survivors), the cost rises 
linearly at a very steep rate. But for the three-layer system, the "cost" flattens out 

after nine or so engagements per warhead. 

Figure 3.4 portrays the relationship between the cost per attacking object and the 

total number of attacking objects for a three-layer system and two different 
single-shot kill probabilities. As just discussed, we see that for the three-layer 
system, cost is relatively insensitive to the probability of no survivors, there being 

little difference in cost between probabilities of 94 percent and 1.8 percent. We 
find this both counterintuitive and important—it says that with a multilayered 
defense, tightening the demand for no survivors can be achieved at a relatively 

small increase in expected total system cost. We will now describe in a bit more 
detail how the demand for a higher probability of no survivors drives (1) the 

7In addition to the probability of no survivors, some readers may also wish to keep track of the 
expected number of objects leaking through the missile defense system. The relationship between 
p(no leakers) and the number of leakers is a very simple mathematical identity: -p = ex, where p is 
the probability of no survivors and x is the expected number of leakers. Taking the case of 64 
attackers, SSPk of 1 /2, and .939 probability of no leakers, since p = .939, we find that x = .0625, since 
.939 = e-0625. 
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required number of engagements per surviving object; and (2) the expected total 

resources the defense must expend per inventory object in the enemy's arsenal. 

Table 3.3 demonstrates the relationship between "the demand on resources" as a 

function of "the demand on outcome"; it does so for various sizes of attack 

(ranging from 16 objects to 512 objects). 

To orient the reader, the column tided "I/SO" is the total number of interceptors 

per surviving object that is demanded; the column titled "Expected Total 
Cost/IO" is the expected resources demanded per attacking object; and the 

columns headed 16,32, and so on, reflect different attacker inventory sizes. 

Take, for example, the case of 64 attacking objects. To register a positive 

probability of zero leakage (at least in the second significant figure) requires four 

engagements per surviving object, i.e., four engagements with an SSPk of 1/2 
results in a .02 probability of zero leakage against 64 attacking objects. In turn, 

the four engagements require a deployment cost of 2.0 engagements per 

attacking object. 

Table 3.3 

Probability of No Survivors as a Function of "Engagements 
per Surviving Object" and "the Number of Attackers" 

Expected 
Total 

Nui nber of Attackers 

I/SO Cost/IO 

0.00 

16 

.000 

32 

.000 

64 128 256 512 

0 .000 .000 .000 .000 

1 1.00 .000 .000 .000 .000 .000 .000 

2 1.40 .010 .000 .000 .000 .000 .000 

3 1.70 .118 .014 .000 .000 .000 .000 

4 2.00 .356 .127 .016 .000 .000 .000 

5 2.20 .602 .362 .131 .017 .000 .000 

6 2.40 .777 .604 .365 .133 .017 .000 

7 2.50 .882 .778 .605 .366 .134 .018 

8 2.60 .939 .882 .778 .606 .367 .135 

9 2.70 .969 .939 .882 .779 .606 .368 

10 2.85 .985 .969 .939 .882 .778 .606 

11 2.90 .992 .985 .969 .939 .883 .778 

12 2.95 .996 .992 .985 .969 .939 .883 

13 3.00 .996 .992 .985 .969 .939 

14 3.05 .996 .992 .985 .969 

15 3.10 .996 .992 .985 

16 3.15 .996 .992 

17 3.20 .996 

NOTE: SSPk =1/2. I/SO is interceptors per surviving object. 
Expected Total Cost/IO is the total cost per attacker's inventory object. 
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At the same time, we observe from the table, still for the case of 64 attacking 
objects, that a demand for a probability of no survivors of 94 percent requires 10 
engagements per surviving object—an increase by a factor of 2.5 in terms of total 

engagements (10 divided by 4). However, the expected demand on deployed 

resources is increased by only a factor of 1.425 (2.85 divided by 2). 

Now examine the relative increase in expected deployment costs for the case of 

512 objects. The demand of .02 probability of success places an expected demand 

for deployed resources of 2.5 engagements per inventory object. A demand of 

.94 probability of success places a demand on deployed resources of 3.00 
engagements per inventory object. The increase here is a factor of 1.2. That is, 

for a 20 percent increase in deployed resources, the probability of success is 

raised from a dismal .02 to a highly respectable .94. 

The table shows that for these numbers of attacking objects, a shift upward in 
probability of success from .02 to .94 results from adding six engagements per 
surviving object. (From 4 to 10 for 64 attacking objects and from 7 to 13 for 512 
attacking objects.) But this shift in engagements per surviving object does not 
cause a commensurate increase in deployment costs (cost per inventory object). 

The table also shows that the dynamic range for the "cost per object" is not great, 

from around 2.0 for small numbers of attackers and low demands on outcome to 

3.0 for large numbers of attackers and robust demands on outcome. 

For the case of "optimized" multilayered defenses, since the cost for a high 
probability of zero leakage is not much more than that for a low probability (e.g., 
for increases in deployment costs of well under 50 percent more, we can afford a 
high probability of no survivors), it seems sensible to demand a high probability 

of zero leakers. Accordingly, in the analyses in this report, we will demand at 

least 90 percent probability of zero leakers. 

Effectiveness of Interceptors in Each Layer 

It is clear from Figure 3.4 that higher interceptor effectiveness {SSPk) does greatly 

reduce the cost per attacking object. There is a large difference in cost 
corresponding to the cases of SSPk = 1/2 and SSPk = 3/4. How kill probability 

affects the optimal allocation, however, is somewhat complex. 

Consider our base case of 64 attacking warheads against a three-layer system, 

where SSPk = 1/2 and per-shot cost is one in all layers, with a demand for >90 

percent probability of no survivors. The optimal allocation in this case is the 
firing doctrine of 1/2/7, for an average allocation of 64 engagements in the first 

layer, 64 in the second, and 56 in the third, or an expected total of 184 
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engagements. The implications of higher and lower SSPk in the first layer are as 

follows: 

• Case C in Table A.l. If the SSPk in the first layer is, for example, 3/4—higher 
than the SSPk of 1/2 in other layers—the optimal allocation is 1/2/6: there is 
no change in the number of engagements per object in the first layer, but a 
reduction in the total number of engagements per object in later layers, with 
all of the reduction (from seven to six) taking place in the last layer. The new 
allocation is 64 engagements in the first layer, 32 in the second, and 24 in the 
third, for an expected total of 120 engagements, a reduction of 64 interceptors 

from the base case.8 

• Case D in Table A.I. However, when the effectiveness of the first layer is 1/4, 

the optimal allocation still places one engagement per object in the first layer, 

two in the second, and seven in the third, or 1/2/7. This translates to 64 
engagements in the first layer, 96 engagements in the second layer, and 84 in 
the third, for an expected total of 244 engagements, 60 more than the base 

case. 

Based upon this simple parametric analysis, it should be clear that the 

effectiveness of interceptors is a significant factor in overall inventory 

requirements and costs. 

Section Summary 

In this section we have examined a great many cases, summarized in Table A.1 in 
the Appendix. We began by examining the impact of four factors on required 

inventory size and, by implication, overall missile defense costs: 

1. the number of layers of the missile defense system; 

2. the size of the attacker's inventory; 

3. the demanded probability of no survivors; and 

4. the effectiveness of the interceptors in each layer (SSPk). 

Through these analyses, we determined that an optimized layered defense is an 
effective means of reducing the costs of a missile defense system. Such defenses 
reduce the required ratio of deployed interceptors to attackers, thereby reducing 

*The lower number of interceptors required in the successive layers arises from the fact that 
each interceptor in the first layer has twice the effectiveness; rather than 32 objects surviving the first 
layer, only 16 now do, lowering the required number of engagements to achieve the demanded 
probability of no survivors. 
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the required inventory of interceptors. Multiple layers can contribute greatly to 
reducing the growth rate of the required interceptor inventory, thus yielding a 

high probability of zero leakers without having to incur much additional cost. 

Finally, SSPk of interceptors remains a significant driver of the total cost per 

inventory object. Throughout, we have shown that a simplified analytic 
framework may be used to examine the impact of these various parameters. 

In the next section we will turn our focus to some operational parameters that 
also have an impact on the overall cost of a missile defense system. 
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4. Operational Cost Drivers 

In addition to the four factors we identified in the last section, four additional 
considerations, of an operational nature, drive the optimal allocation of resources 

to layered defenses: 

5. the quality of kill assessment; 

6. fractionation; 

7. saturation and exhaustion; and 

8. multiple terminal sites to provide a "footprint." 

Quality of Kill Assessment 

To understand the problem of kill assessment, we need to provide two additional 

definitions before we may proceed: 

• The "probability of surviving" (SSPs) is defined as 1 - SSPk. 

• The "probability of leaking" (SSPl) is denned as the probability that an object 
will be targeted for an engagement in the next "look-shoot," given an 
engagement by a single interceptor in the prior "look-shoot."1 

If "kill assessment" is perfect, then the "probability of leaking" is exactly the 

same as "the probability of surviving" (1 - SSPk). If 1/2 of the objects in an 
attack are killed in a particular "look-shoot," then with perfect kill assessment, 
the 1/2 of the objects not killed are seen and engaged by the next "look-shoot." 
With perfect kill assessment, if 3/4 are killed, 1/4 leak to the next layer. 

On the other hand, if "kill assessment" is not perfect, then the next "look-shoot" 

will see and engage more objects than indicated by the probability of surviving. 
For example, a particular "shoot" might indeed kill 1/2 of the attacking objects, 

but because of less-than-perfect "kill assessment," the next "look-shoot" might 

see and engage 3/4 of the objects that were in the previous layer (all of those not 

killed and 1/2 of those that were killed). That is, of the objects attacked in the 
next "look-shoot," 1/3 of them have already been killed but are nevertheless 

1Also referred to as the "leakage rate." By definition, SSPk > 1 - SSPl. 
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engaged. Table 4.1 shows how imperfect kill assessment can affect the cost in 

interceptors per attacking object.2 

There is, ultimately, a reliable method for determining whether an object has 

been killed. If the object hits (or falls) near the target and the warhead detonates, 
the object was not killed. If not, the object is deemed as killed. Eventually, things 

are sorted out on the ground. Thus, in computing the probability of no 
operational weapons impacting at or near the targets, the "probability of kill" in 

each layer is the relevant measure of effectiveness. For example, if the 
"probability of kill" is 1/2 and there are 512 (29) attacking objects, then using the 
"rule of four," we see that we need 13 engagements per surviving object in order 
to have more than 90 percent probability of no weapons "operating" (exploding) 

on friendly soil. On the other hand, the "probability of leaking" (SSPl), as 
defined here, is the appropriate measure to use in determining how many 
interceptors must be deployed by the defender and the proper allocation of those 
interceptors among layers. The table captures the logic just described. 

The above construction takes into account three cases and neglects one. It takes 

into account: 

1. the objects not destroyed in one layer and engaged by the next; 

2. the objects destroyed in one layer and not engaged by the next; and 

3. the objects destroyed in one layer but still engaged by the next. 

Table 4.1 

Increase in Expected Total Cost per Attacking 
Object for Two-Layer System in the Absence 

of Perfect Kill Assessment 

Engagements 
per Surviving  Total Cost/IO  
Object SSPl = 1/2       SSPl = 3/A 

10 3.875 5.90 
11 4.000 6.21 
12 4.125                   6.53 
13 4250 6.85 

NOTE: SSPk =1/2, one cost unit per assigned 
interceptor, for all layers. Optimal allocations assumed. 
The case of SSPl = 1/2 means there is perfect kill assessment 
since then SSPl = 1 - SSPt Total Cost/IO is the expected 
total cost in interceptors for each of the attacker's inventory 
of attacking objects. 

2Imperfect kill assessment will also change the optimal allocation: in the case of ten shots per 
surviving object, the allocation with perfect kill assessment (where SSPl and SSPk are identical at 1 /2) 
is 3/7, but when SSPl is 3/4 and SSPk is 1/2, the optimal allocation is 4/6. 
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The construction does not take into account the case where an object is not killed 

in one layer and is not evaluated for engagement in the next layer. 

The rules of engagement will be such as to mandate an engagement unless there 

is clear evidence that the object has already been killed; when in doubt, an 
engagement should be attempted. Because of this imperative, the number of 
objects in the set of those not destroyed in one layer and not engaged in the next 

should be quite small. If this fraction is at all significant, however, the 

"probability of no survivors" will be quite small. 

Recall that the probability of leaking (SSPl) identifies the percent of objects that 

the next layer sees, independent of whether they have been killed. Up to this 

point, we have generally assumed that probability of survival (1 - SSPk) and 

probability of leaking (SSPl) were identical, i.e., that the SSPk represented the 
probability that a single engaged warhead would not "leak" to the next layer. 
We will now relax this assumption and introduce the notion that the survival 

rate and leakage rate may differ, sometimes significantly. 

The survival and leakage rates may differ when an object "killed" in one layer is 

nevertheless engaged by the next layer, i.e., the kill assessment system is unable 

to distinguish perfectly between objects that have been killed and those that 
haven't. Let us briefly consider the physical problem to understand the 
circumstances under which the survival and leakage rates might differ. 

• During a missile's prelaunch period, whether it is in a factory, in garrison, en 
route to a launching site, or mounted on a transporter-erector-launcher 

(TEL), a kill on the ground will keep the missile from being seen by sensors 
and targeting systems in the boost-phase layer because it will be rendered 

unlaunchable.3 

• Similarly, during boost phase, before threat missile burnout and entry into 
ballistic trajectory, a kill will result in a disrupted trajectory, causing the 

missile to fall back to earth far short of its intended target, unseen (or else 

clearly assessed) by the next layer of midcourse look-shoots. 

• After burnout, the missile is on a ballistic trajectory. A kill here may or may 
not result in the missile's being engaged by the next layer. That is, at this 
point missiles whose warheads have been disabled or destroyed may be very 
hard to distinguish from those that have not been killed; the kinematics of 

"killed" and "not-killed" missiles may appear similar. 

■^For a discussion of some of the virtues of boost-phase defenses, see Stephen Weiner, "Systems 
and Technology," in Ashton B. Carter and David N. Schwartz (eds.), Ballistic Missile Defense, 
Washington, D.C.: The Brookings Institution, 1984, pp. 49-97 and especially pp. 91-97. 
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■■•    By late midcourse and terminal phases, the continued ballistic trajectories of 
"killed" missiles (or objects) may make it impossible to distinguish between 

killed objects and those objects that have not been killed; every object 

penetrating to the last layer, killed or not, represents a threat and is probably 

engaged. 

The way we treat this problem is to use the parameters, SSPk and SSP1, in the 

following way: 

• SSPk will still be used to determine the required number of engagements per 

attacking warhead to achieve the demanded probability of no survivors.4 

• SSPl will be used to determine the size of the inventory required to achieve the 

necessary number of engagements.5 That is, lack of kill assessment places a 

demand for more deployed interceptors, but it does not affect our 
computation of the probability of no survivors. 

Case E in Table A.l. Let us assume that in the second layer, although the SSPk 
remains 1/2 and costs remain the same, there is a 75 percent leakage rate (SSPl = 
3/4) due to the fact that it is very difficult to distinguish between vehicles killed 
in the second layer and those not killed. The optimal solution for this excursion 

puts two engagements per object in the first layer, two in the second, and six in 
the third layer (a firing doctrine of 2/2/6), for a total of 128 interceptors in the 
first layer, 32 in the second, and 54 interceptors in the third.6 The allocation 
reduces the number of objects that leak into the second layer, where the 
effectiveness is weaker. Furthermore, the poor effectiveness of assessing "kills" 
after the middle layer drives the minimum required engagements up from 184 to 
214, a cost increase of 16 percent, and allocates a great deal more interceptors to 

the first layer, where the leakage rate equals (1 - SSPk). 

Figure 4.1 portrays the number of interceptors a defender must deploy to achieve 

>90 percent probability of no survivors as a function of the number of attacking 
objects. There are two pairs of lines: the topmost pair represents the two-layer 

missile defense system, and the bottom pair represents a three-layer system. For 
each pair, the solid line represents the case of perfect kill assessment, where SSPk 
and SSPl have identical values of 1/2 in all layers, and the dashed line reflects 
the cases when SSPk is 1/2 and the leakage rate (SSPl) in the next-to-last layer is 

4The computation becomes more complex if the SSPks are different in each layer because of the 
various combinations that might yield an equivalent probability of no leakers. 

SThat is, SSPl is substituted for 1 - SSPk in the allocation optimization process. 
6A firing doctrine of 2/3/5 yields a lower cost per attacking object (3.277), but it results in 33.75 

interceptors allocated to the last layer—an impossibility. 
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Figure 4.1—The Effect of Imperfect Kill Assessment 

higher—at 3/4. As is clear from the figure, imperfect kill assessment, resulting in 

a higher leakage rate, can increase the size of the inventory of interceptors 
required to achieve a demanded probability of no survivors, because subsequent 
layers fire at more objects, some of which have already been killed. The effect is 
much more pronounced in a two-layer system than in a three-layer system.7 

Fractionation 

Fractionation—the dispensing of submunitions or multiple warheads—greatly 

complicates the planning of missile defenses and can greatly increase system 
costs. That is, fractionation multiplies the number of attacking objects that the 

next layers must engage and thus increases the effective size of an adversary's 

attack. 

We will use the term "prefractionation" to connote operations during the time 

before submunitions separate from their missile. This is meant to include 

consideration of a whole range of prelaunch operations (including special 

7Clearly, additional sensitivity analyses on kill assessment and discrimination would be useful, 
but they are well beyond the scope of this report. 
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operations and counterforce), as well as boost and postboost intercepts taking 

place before fractionation. 

Case F in Table A.l. Take the following case: a demand for at least 90 percent 

probability of total threat negation, three layers, with SSPk of 1/2, a cost of one in 

each layer, and fractionation by a factor of 16 after the first layer. That is, a 
missile not killed in the first layer will fractionate into 16 objects (submunitions 
and/or decoys) that must be faced by the next layer.8 For this case, the optimum 

firing doctrine is 6/2/6, at a cost of 440 engagements: 384 engagements in the 
first layer, 32 in the second layer, and 24 in the last layer, for a total cost of 6.875 
per attacking object—fractionation has required additional resources, most of 

which are allocated to the prefractionation layer. As expected, because of 
fractionation, the allocation emphasizes the first layer because of the leverage 

provided by early intercept—and the cost penalty in fielding systems to defend 

against the expanded number of attacking objects after fractionation. 

Figure 4.2 plots the optimal allocation of engagements among three layers as a 

function of the level of fractionation. The key insight for the figure is that it is 
extremely efficient to allocate resources to kills before fractionation—as described 
by the figure, as fractionation increases, allocating interceptors to the layer before 
fractionation keeps an even larger number of warheads or submunitions from 
surviving and leaking into the next layer. As the fractionation rate increases the 
number of engagements in the last two layers remains constant, and the first 
layer (before fractionation) is allocated additional engagements. 

Further, there are numerous additional operational reasons that argue for 

attacking missiles before fractionation. Because of the smaller size and greater 
number of submunitions, once fractionation has taken place it may be virtually 
impossible to distinguish between submunitions that have been rendered 
ineffective and those that haven't. The use of decoys may further complicate 
postfractionation defenses, making prefractionation intercepts more attractive.9 

®With 64 initial attackers and a fractionation factor of 16, this would yield 1024 fractionated 
objects if none of the missiles were destroyed before fractionation. The reader will recall that by the 
"rule of four," 1024 attackers against interceptors having an SSPk of 1 /2 generates a demand for 14 
engagements per object (1024 is 210, and ten plus four is 14) for >90 percent probability of total threat 
negation. 

9Jasper Welch has noted that we may also prefer prefractionation intercept because there may be 
difficulties associated with multiple engagements of objects once they are in ballistic trajectory. While 
it would clearly appear to be a useful area for additional analysis, it is well beyond the scope of this 
report to address the issue in detail. 
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Saturation and Exhaustion 

A third operational issue is that of saturation, where an attacking missile force 

may be of sufficient size to overwhelm missile defenses. We now address this 

problem, especially with regard to boost/prefractionation systems. 

One construct is the following terms: the role of boost and postboost defenses is 

to reduce, over the campaign, the expected total number of objects seen and 
engaged by the midcourse and terminal defenses. It is in the last "look-shoot" 
layers that the demanded number of engagements for each surviving object is 

enforced.10 In this construct, the phrase "over the campaign" takes on special 
importance. If the boost and postboost systems can reduce the number of objects 

that would otherwise be seen and engaged by subsequent layers by one-half, for 
example, then the defender can reduce the number of interceptors deployed in 
subsequent layers by slightly more than one-half. We will now show why this is 

so. 

10Recall that the demanded number of engagements per surviving object is determined by the 
requirement to achieve a stated probability that no operating weapons will penetrate all defense 
layers. 
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Consider the case of 64 attackers, a three-layer defense system where the last two 

layers have an SSPk of 1/2, a cost of one for each interceptor, and perfect kill 

assessment. If there are no engagements in the first layer, then these two layers 

see 64 attackers, and the optimal firing doctrine is 3/7 for the last two layers (see 

Table 2.4). The expected total required inventory of interceptors is 192 in the 

second layer and 56 in the last layer, for a total of 248. 

Suppose the first layer (representing boost and prefractionation defense) is able 

to reduce, over the campaign, the number of attackers reaching layer two from 64 
to 32. Then only nine engagements per surviving object are required, with the 

optimal firing doctrine being 2/7, and an expected total cost of 120 (32-2 + 8-7), 

plus the costs for prefractionation defenses.11 

In terms of sizing the required inventory, the most important issue is whether, 
over the course of the campaign, the boost and prefractionation defenses can live 

up to their "contract" to kill a stated percentage of the total attacking objects- 
even though they may occasionally be out of position or temporarily be saturated 

in a particular attack and thus unable to engage all attacking missiles. 

With respect to boost/prefractionation defenses, the defender's concern is not 

about temporary saturation or being out of position in a particular attack.12 

Rather, his worry is in another direction: if the defender is counting on the boost 

and prefractionation defenses to subtract out half the objects over the campaign, 

and they actually subtract out only a third, then there is a higher probability that 

midcourse and terminal defenses will run out of interceptors before the 

campaign is over. 

On the other hand, the defender must worry about saturation in the last layer 

and plan the architecture accordingly. Previous layers prevent exhaustion in the 
last layer and should help alleviate saturation in that layer, i.e., in the presence of 

previous layers, the attacker does not have complete control of the rate of 

presentation of objects fo the last layer. 

In summary, the problem of saturation is most relevant in the last "look-shoot." 

Prior "look-shoots" have the task of reducing the total number of objects 
according to their "contract" so that defenses in the next layers do not run out of 

interceptors during the campaign. 

11We will later devote a section to an illustrative mission area analysis that includes tradeoffs 
between boost/prefractionation and postfractionation defenses. 

12Although in the case of nuclear weapons, this would obviously be an important concern. 
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Multiple Sites to Provide a "Footprint" 

Case G in Table A.l. Now consider the case where eight terminal defense sites are 

required in the last layer to adequately defend a designated "footprint," and for 

simplifying purposes, there is no overlap in defense coverage among the sites. 
The demanded probability of no survivors remains at greater than 90 percent, 
and the SSPk and costs of interceptors are identical in each layer. Table 4.2 shows 

a worksheet for the case. 

We can see that for the three-layer system, the optimal allocation is 2/5/3, which 

results in 128 interceptors in the first layer, 80 in the second layer, and 12 in the 

last layer, and the expected total interceptors deployed increase from the base 

case of 184 to 220. The existence of separate sites is somewhat similar to 

fractionation: allocations prior to the terminal layer become more attractive. 

Section Summary 

Although the analysis in this section has led to the inclusion of a number of new 
parameters, we have shown that the methodology can readily incorporate them, 

and issues of an operational nature can be assessed with minimal changes to the 

basic framework. In this section we have showed how the methodology could be 
used to examine the quality of kill assessment, fractionation, saturation and 

Table 4.2 

Worksheet for Determining the Least-Cost Defense Allocation, 
Eight Terminal Defense Sites 

1st 

Layer Expected 

2nd 

/ 

3rd 

I/O c 

Total 

I/O 

Total 

/ i/o c / I/O c Cost/Object 

1 0 1-0=0 1 10 1-10-8 10 80 

1 1 1 1/2 9 36 10 37 

1 2 2 1/4 8 16 10 18 

1 3 3 1/8 7 7 10 10 

1 4 4 1/16 6 3 10 7 

1 5 5 1/32 5 1.25 10 6.25 

1 6 6 1/64 4 .5 10 6.5 

1 0 0 1 5 5 1/32 5 1.25 10 6.25 

1 1 1 1/2 5 5/2 1/64 4 .5 10 4 

1 2 2 1/4 5 5/4 1/128 3 .19 10 3.44 

1 3 3 1/8 5 5/8 1/256 2 .07 10 3.69 

NOTE: 64 attacking objects. SSPk = 1/2, cost of one per assigned interceptor, for all 
layers. Eight sites with four interceptors at each site in terminal layer. Preferred 
allocations in bold. 
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exhaustion, and multiple sites—and this has led to additional insights on 
resource allocation: 

• The quality of kill assessment determines the number of additional 

interceptors that must be bought to ensure that the demanded number of 

engagements can be achieved. 

• Fractionation increases our preference for allocating interceptors to layers 

before fractionation, and away from postfractionation defenses. 

In the next section, we will explain how the optimal allocation of resources is 
affected by differences in layer interceptor costs and buy-in costs, and then we 

will present an excursion in which a number of parameters are simultaneously 

varied from their base case value. 
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5. Interceptor and Buy-In Costs 

In addition to the eight factors we have thus far examined, there are two cost- 
related considerations that also drive the optimal allocation of resources to 

layered defenses: 

9.   the case where there are differences in the per-interceptor costs from layer to 

layer; and 

10.   the case where there are buy-in costs that must be assumed before any 

interceptors can be deployed. 

Since each of the excursions we have described in the past sections has examined 

the impact of a single factor somewhat in isolation of the remaining ones, this 

section concludes with the analysis of a case that involves simultaneously 

changing several assumptions from the base case values. 

Different Interceptor Costs in Each Layer 

Consider two additional excursions: in the first, the cost per engagement in the 

first layer is twice that in the other two layers; in the second, the cost per 
interceptor in the first layer is half the cost in the other layers. Remember that 
the base case yielded an optimal allocation of 1/2/7 and 184 total interceptors for 

achieving >90 percent probability of no survivors. 

• Case H in Table A.l. The case where the cost in the first layer is twice that in 
the other layers has an allocation identical to the case where the effectiveness 
of the first layer was half that of the other layers, a firing doctrine of 0/3/7, 
for an expected total inventory of 248 interceptors—as compared to the base 

case of 184 interceptors. 

• Case I in Table A.l. When the cost in the first layer is half that of the other 
layers, the firing doctrine is 2/2/6 for an expected inventory size of 184 
interceptors. The total expected number of interceptors required is the same 
as the base case—184. However, since the 128 interceptors in the first layer 

come at half the normal price, the expected resources to be expended is 
reduced from the base case—from 2.875 units of cost per enemy inventory 

missile to 1.875. 



43 

Not surprisingly, the effects are somewhat similar to the cases where the 
effectiveness of the first layer was varied (but the unit cost was the same in each 

layer)—resources are allocated away from the more expensive layer. 

Buy-In Costs 

We generally consider costs to be somewhat "lumpy" and to reflect not just the 
cost of the interceptors, but the costs of an "engagement," which also includes 
some of the associated infrastructure and support: sensors, engagement control 
systems, launchers, operations and support, etc. One can dynamically determine 

the costs of units over various numbers of attacking warheads1 in one of two 

ways: 

• by rolling all investment and other fixed costs into cost per interceptor, and 

thereby amortizing the fixed costs over the deployed interceptors; or 

• by separating out fixed costs from marginal costs.2 

As will be seen, the way buy-in costs are treated has significant implications for 

the optimal allocation of resources. 

Buy-In Costs in One Layer 

Consider another excursion to the base case, where there are fixed buy-in costs 

that must be assumed before the first interceptor can be fielded. Assume 64 
attacking objects against a three-layer system, but assume that the first layer has 
a buy-in cost of 512 cost units and there is no buy-in cost for the other two 
layers.3 Again, the objective is to ensure at least a 90 percent probability of zero 

leakage. 

If we were to use the base case allocation of 1/2/7, the inventory cost for the 

three-layer system would climb from 184 to 696,512 of which would be 
accounted for by the buy-in cost in the first layer. Because of this buy-in cost, 

however, the re-optimized allocation for 64 attackers is weighted away from the 
first layer, and it results in an allocation of 0/3/7 and no interceptors to the first 

1One may also use a hybrid approach in which some costs (e.g., operations and support, 
individual batteries' equipment sets) are rolled into the unit cost, and some (e.g., research and 
development, portions of theater sensor systems) are considered as fixed costs and amortized over 
the total inventory of units. This approach is not developed here. 

2since our measure of merit is cost per attacking object. 
3This could reflect the fact that production of the systems in the other layers is already at 

production cost, and that fixed costs have already been covered. 
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layer, 192 to the second layer, and 56 to the third layer, at an expected total cost 

of 248. 

The aversion to incurring the buy-in cost for the first layer diminishes as the 
attack size increases, however, because the buy-in costs are amortized over the 

larger number of attacking warheads. Figure 5.1 portrays the optimal allocation 
of interceptors given a buy-in cost of 512 in the first layer, as just described, but at 
different numbers of attacking missiles. As can be seen from the figure, for fewer 
than 512 attacking missiles, there are insufficient attackers to warrant paying the 

buy-in cost in the first layer. At 512 attacking objects, however, we are 
indifferent between interceptors bought in the first or second layer, and with 
more than 512 attackers, the first layer is allocated most of the new interceptors.4 

Identical Buy-In Costs in All Layers 

The case where there are identical buy-in and marginal costs in each layer is 
somewhat more complicated: a buy-in cost in all layers means that each layer 
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Figure 5.1—Buy-In Costs in One Layer 

4With lower buy-in costs the same threshold phenomenon would be observed, although the 
threshold for affordably buying into new layers would obviously be lower. 
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faces a threshold, the net effect of which is that it makes multiple layers of look- 

shoots more costly. That is, buy-in costs in all layers may negate some of the cost 

advantages of multiple layers by making the cost for an additional layer 

prohibitively expensive. 

Consider another excursion to the base case, this time where there are buy-in 

costs of 512 for each of the three layers. The base case allocation of 1/2/7 would 

have resulted in an inventory cost of 1720 units, because we would first have to 
pay the buy-in costs for each of the layers (for an expected total of 1536) before 

buying the 184 engagements. 

As shown in Figure 5.2, however, when the allocation is reopumized for the buy- 
in costs in all layers, the optimal allocation is the firing doctrine of 0/0/10, for a 

total of no engagements in the first and second layers and 640 engagements in 

the third, at a total expected inventory cost of 1152. Thus, at 64 attackers, the 

buy-in costs for three separate layers might be prohibitively expensive, 
mitigating against multiple layers; it is most efficient to assume the buy-in cost 
for only a single layer. Nevertheless, and as might be expected from the case of 
buy-in costs for a single layer, at successively higher numbers of attackers, it 

becomes cost-effective to absorb the buy-in costs and field interceptors in 
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additional layers. In fact, if the number of attacking objects were 128, fielding a 

second layer would reduce the expected total cost. With just one layer the cost is 

1408 (128 • 11) plus the 512 buy-in for the first layer. With two layers, the firing 

doctrine is 3/8 and the expected cost is 512 plus 512, or 1024. 

Buy-In in the Presence of Fractionation 

Emphasizing prefractionation defenses remains attractive even when there may 

be considerable buy-in costs in fielding that layer. Take the case of 64 missiles 

with a fractionation into 16 submunitions after the first layer. For the case of a 

defense that includes a prefractionation layer, the cost of the optimally allocated 

defense is 440 (see Case F in Table A.l). On the other hand, if there were no 

prefractionation layer, the cost of the deployed defense would be much greater, 

since the number of attacking objects is 1024 (64 • 16). Fourteen engagements per 
surviving object are required to achieve >90 percent probability of no survivors. 
The optimal firing doctrine is 3/11 (see Table 2.4). The allocation of engagements 
is 3072 to the penultimate layer and 1408 to the last layer, for a total expected 

number of engagements of 4480. 

The difference between 4480 and 440 interceptors is much greater than the buy-in 

cost of 512. Accordingly, fielding the prefractionation layer, even in the presence 

of a large buy-in cost, represents a large savings in expected total resources. 

Illustration of a More Complicated Case 

Throughout the last two sections we have used rather simple cases to better show 

how each parameter affects the optimal allocation and the expected total costs. 
We will now use a worksheet-based approach similar to the one used elsewhere 

in this report to consider a more complicated case that reflects simultaneously 
differences among layers in the effectiveness of interceptors, the leakage rate, and 

per- interceptor costs (this is Case J in Table A.1): 

• 64 attacking warheads against a two-layer system. 

• SSPk = 1 /2 in the first layer and SSPk = 3/4 in the second layer. 

• SSPl = 3/4 from the first layer to the second layer (not applicable in the last 

layer). 

• Per-engagement costs in the second layer are twice those of the first layer, 

i.e., the higher effectiveness of interceptors in the last layer comes at twice the 

price. 
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•    Assume finally that we demand a greater than 90 percent probability of no 
survivors and want to find the least-cost solution. 

First, if the SSPk were 1/2 in both layers, 64 attacking objects would require ten 

engagements per surviving object to achieve a demanded outcome of greater 

than 90 percent, and the optimal allocation in a two-layered system would be 
3/7—three engagements per object in the first layer, and seven per object in the 
second. Given a different effectiveness of interceptors in each layer, we first need 

to determine how many engagements per object are required to achieve the 

demanded probability of no survivors. 

Figure 5.3 provides a formula for computing the probability of no survivors 
when the effectiveness varies from layer to layer. As can be seen, the probability 

of no survivors is determined by layer effectiveness and the number of shots 
fired in each layer. However, we know from the "rule of four" that with 
engagements having an effectiveness of 1/2, we need a total of log264 + 4 = 10 
engagements per surviving object to achieve a >90 probability of no survivors, 
and from the "rule of two" that with engagements having an effectiveness of 3/4, 

we need half as many (5 = log464 + 2) engagements per surviving object to 

achieve the same level of outcome. 

We therefore start the first row of the worksheet in Table 5.1 by placing ten 
engagements per surviving attack object in the first layer and none in the second, 
and placing in the last row no engagements per object in the first layer and five in 
the second layer.5 The costs per object for each allocation are in the column titled 
"c" and are computed as that layer's product of the fraction of the initial attack 
seen, the number of engagements per object, and the cost per engagement. The 
expected total cost per object is merely the sum of the costs in the two layers. 

In allocating different combinations of engagements per object between the first 

and second layer, we know (or can infer) from the "rule of four" and "rule of 

two" that when the effectiveness of the second layer is twice that of the first, two 
engagements in the first layer are equivalent to one engagement in the second. 

We can therefore fill in the various allocations at a 2:1 tradeoff between the first 
and second layer (e.g., 10/0,8/1,6/2), all of which achieve the demanded 

probability of no survivors.6 

5 As introduced in Table 2.1,/denotes the fraction of the initial attack "seen" by the indicated 
layer, and E/O denotes engagements per attacking object in that layer. 

^The reader may wish to confirm that the demanded probability of no survivors is being 
achieved by computing the probability with the formula presented in Figure 5.3. 
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For n layers of look-shoots, the probability of no survivors is given by: 

PQ{W) = [1 - ((1 - SSP/c/1 • (1 - SSPk2f
2..... (1 - SSPknf

n)]w 

where: 

SSPk/= single-shot kill probability in layer /, 

S/ = number of interceptors allocated per attacking object in layer /, 

W= number of attacking warheads. 

For two layers, an SSPk of 3/4 in the first layer and 

1/2 in the second, eight attacking warheads, one shot per warhead 

in the first layer and five shots per surviving warhead in the second, 

the probability of no survivors is given by: 

P0 (8) = (1 - [ (1 - 0.75)1 • (1 - 0.5)5] )8 = .939. 

Figure 5.3—Calculating the Probability of No Survivors When the 
Effectiveness of Interceptors Differs Among Layers 

As can be seen from Table 5.1, the least-cost solution (in bold) for this particular 

set of parameter values is to put four engagements per object in the first layer 

and three engagements per object in the second layer, for an expected total cost 

per object of 5.92. 

Table 5.1 

Worksheet for Determining the Least-Cost Defense Allocation 

1st Layer 

/ 

2nd 
E/O 

Layer 
c 

Total 
E/O 

Total Cost/ 

/ E/O c Object 

1 10 1-10-1=10 10 10.0 

1 8 1-8-1=8 0.1 1 0.1-2=0.20 9 8.20 

1 6 1-6-1=6 0.18 2 0.18-2-2=0.72 8 6.72 

1 4 1-4-1=4 0.32 3 0.32-3-2=1.92 7 5.92 

1 2 1-2-1=2 0.56 4 0.56-4-2=4.48 6 6.48 
1 5 1-5-2=10 5 10.0 

NOTE: SSPk = 1/2 in first layer, 3/4 in second; SSPl = 3/4 in first layer, not applicable in 
second; cost of one in first layer, two in second. Least-cost allocation in bold. 
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Section Summary 

In this section we have showed how our methodology could be used to examine 

how differences in layer interceptor costs and buy-in costs affect the optimal 

allocation of resources. 

• The impact of differences in interceptor costs among layers was similarly 
(and predictably) shown to affect the optimal allocation, with the allocation 

shifting toward more cost-effective layers. 

• The effect of buy-in costs on the optimal allocation was also demonstrated. 
In our methodology, buy-in costs are amortized over attacking objects—buy- 

in costs may mitigate against investment unless there are sufficient numbers 

of attacking objects. 

We also examined a case that involved simultaneous changes to several factors 

(including differences in per-interceptor costs). The next section examines how 

critical uncertainties arising from the "luck of the draw" might be taken into 
account in the development of an allocation "hedging" strategy. 
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6. Uncertainty 

This section examines the sorts of uncertainties that can complicate missile 
defense planning, and provides the results of an illustrative Monte Carlo 
simulation-based analysis that addresses uncertainties regarding interceptor 

effectiveness and leakage rates. 

Why Uncertainty Is Important 

Concern about uncertainty stems from the possibility that we may not size our 
defenses correctly and thus could exhaust our supply of interceptors before the 
campaign is concluded.1 There are a number of potential sources of uncertainty 

in planning missile defenses: 

• the size of an attacker's inventory of missiles; 

• the attacker's ability to launch large barrages that might saturate missile 

defenses; 

• the level of warhead fractionation that might be achieved by the attacker's 

missile force, and the number of decoys that might be deployed; 

• the nature of the measures the adversary might take to exploit missile 

defense system vulnerabilities; 

• lack of knowledge about the effectiveness of interceptors (SSPk) and of kill 

assessment systems (SSPT); and 

• the "luck of the draw" in processes that are inherently stochastic. 

If we were able to buy and have ready for deployment in any individual 
campaign an unlimited supply of interceptors, there would be a sufficient 
stockpile to draw upon to hedge against unexpectedly bad effectiveness of 
interceptors or kill assessment systems in that campaign. Similarly, there would 
likely be an ample stockpile of interceptors to draw upon if the overall inventory 

was sized in anticipation of supporting a large number of campaigns, and the 

entire inventory of interceptors was deployed (or available) for any individual 

campaign. 

1The authors wish to thank RAND colleague Rich Mesic for suggesting that we explicitly 
address uncertainty in this report. 
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Even if we knew the SSPk and SSPl and other factors, there are limitations in 

using expected values to determine the number of interceptors to deploy for a 

particular campaign. Expected values are only a surrogate for probabilistic 

distributions; the "luck of the draw" will affect the actual number of kills or the 

perceived number of leakers in a given defense layer, and could lead to a 
shortage of interceptors. We therefore need to hedge against "randomness": we 
must determine the inventory size that gives us a desired level of confidence that 

we will not run out of interceptors before the campaign is over. 

The parametric expected-value approach documented in this report lends itself 

nicely to simulation techniques that can be used to examine the necessary 

inventory size to provide the desired confidence that the deployed system will 

achieve a high probability of zero leakers against a particular threat. We will 

next use Monte Carlo techniques to explore the variance about the expected 
values, and calculate the number of interceptors required to provide some level 
of probability (e.g., 90 percent) that in any particular campaign none of the layers 

will run out of interceptors. 

Hedging Against Risk in Sizing the Inventory 

Assume that we are facing the following hypothetical situation: we are confident 

from our intelligence that our defense will face no more than 64 attacking objects, 

none of which is capable of fractionation. Assume also the following: 

• Operational testing and evaluation leads us to believe that the probability of 
kill for interceptors in all layers of a three-layer defense is 1/2. 

• There is perfect kill assessment between layers one and two, but we have 
some uncertainties about the leakage rate from the second to third layers. 
This is because our kill assessment system, although deployed, has not been 
tested in an actual campaign. We assume that, on average, 1/2 of the objects 

killed in the second layer are likely to be misclassified as "not-killed" and 

shot at in the next layer. That is, the SSPl is 3/4 between the second and 

third layers. 

Modeling Assumptions 

We model the possible states that might be assumed by an attacking object as 

follows: 
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• We fix the defense firing doctrine at 1 /2/7.2 

• Each attacking object is thus allocated one interceptor in the first layer. This 

interceptor has a probability of kill of 1/2—whether a particular object is 

killed or not is determined by random draw. 

• If the first layer does not actually kill the object, the second layer will fire two 

interceptors at the attacking object. 

• If either interceptor in the second layer actually kills a particular object 
(determined by another draw) and there is a correct kill assessment for that 

kill (yet another draw), then the third layer will not fire any interceptors at 

that particular object. If neither interceptor kills the object, or if one or both 

kill the object but there is incorrect kill assessment, then seven interceptors 

will be fired against that particular object in the third layer.3 

This logic dictates that if an object passes to the second layer, unless there is both 
a kill and a proper kill assessment, the third layer will see and fire at the object. 

Simulation Results 

We simulate 100 campaigns to determine the number of interceptors required to 
adhere to the firing doctrine of 1/2/7 while providing high confidence that we 
don't run out of interceptors, especially in the last layer. We do this by running a 

total of 6400 simulations of the possible outcomes for an individual object (64 
objects per campaign, 100 campaigns) and then sequentially aggregating the 

results into groups of 64 objects to reflect the outcome of each of the 100 possible 

campaigns. 

Results are reported in Table 6.1. The first three rows of the table report results 

for the individual layers, and the last row, "Total," is for the total number of 

interceptors used in each campaign. The expected number of interceptors 
allocated from our expected-value model is reported in the column titled 

"Expected Value," followed by the simulation results: the minimum and 
maximum numbers of interceptors required for each layer across the 100 
campaigns, the mean number of interceptors, and the 90th percentiles for each 

2The reader will recall that the firing doctrine 1/2/7 is the least-cost allocation for a three-layer 
system with the base case assumptions: SSPk of 1/2 for each layer, SSPl of 1/2 for all layers, equal 
cost per interceptor in each layer, yielding >90 percent probability of total threat negation. We are 
using this firing doctrine rather than the actual least-cost allocation of 2/2/6 both to simplify 
comparisons with the base case and to examine the robustness of the base case architecture in the face 
of poorer kill assessment than expected. 

SThus, for each kill in the second layer, there is a separate kill assessment (e.g., if a particular 
object is "killed" twice (by draw), then two kill assessments (draws) are made). 
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Table 6.1 

Required Interceptors from Monte Carlo Simulation 

Expected 90th 
Value Minima Maxima Mean Percentage 

Layer 1 64 64 64 64 64 (1.0) 
Layer 2 64 48 90 64 72 (1.1) 
Layer 3 126 70 189 122 154 (1.2) 
Total 254 

[3.97] 
184 343 250 286 (1.1) 

[4.47] 

NOTES: Expected SSPk in each layer is 1/2; SSPl = 3/4 between second 
and third layer. Numbers in parentheses () are ratio of 90th percentile to 
expected value. Numbers in square brackets [] are ratios of total 
engagements to initial attacking objects. Numbers may not total because 
results reflect separate runs. 

layer and for the total interceptors used. The numbers in parentheses following 
the 90th percentiles are the ratio of the 90th percentile to the expected value, a 

rough index of the effect of uncertainty on inventory size. 

As is clear from the differences between the columns for the 90th percentile and 
for the expected-value optimal allocation of 1/2/7, the simulation results suggest 

that if we were to use the optimal 254 interceptors from the expected-value 
model, we would run short of interceptors in a good number of the campaigns, 
43 out of 100 in our simulation—a 43 percent chance of catastrophic failure. 

Shortfalls occurred in the second layer in 44 of the campaigns, and in 46 
campaigns the third layer ran short.4 If we want to provide high confidence that 

in a given campaign there is 90 percent confidence we will not run out of 
interceptors, then we should plan to deploy about 286 interceptors, with most of 
the additional interceptors going into the third layer.5 Compared with the 
allocation for the base case, the reader can see that the demand to hedge against 

uncertainty (the "luck of the draw") can significantly increase the required size of 

the inventory, especially in the last layers. 

4We used the binomial distribution to confirm the reasonableness of the simulated 90th 
percentile for the second layer by computing the cumulative probability of all possible numbers of 
leakers, from 0 through 64. Since two interceptors would be fired at each object surviving to the 
second layer, the 90th percentile value of 72 for the second layer in the table would mean that, on 
average, 36 objects survived from the first layer. The binomial distribution revealed that the 90th 
percentile in fact occurs between 36 (cumulative probability of 0.870) and 37 (cumulative probability 
of 0.916). 

5As might be expected, the effect of uncertainty compounds from layer to layer. 
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Section Summary 

In this section we used Monte Carlo simulation techniques to examine the effect 

of the "luck of the draw," and we constructed a hedging strategy that would 
provide a high level of confidence that we would have enough interceptors to 
ensure 90 percent confidence of no exhaustion in a particular campaign. This 
required inventory was substantially larger than that suggested by the expected- 

value model, and it was allocated far more heavily to the last layer. 

There are obviously many other issues related to uncertainty, including the 

impact of correlated errors in kill assessment on large salvos, a priori 
measurement of effectiveness, operational issues relating to robustness of a 

missile defense system that is deployed into a theater over time, and how the 

architecture or firing doctrine might be adapted over the course of a campaign to 

mitigate particular technical or doctrinal problems. All these issues are worthy 
of serious research; our purpose, however, was to show how the methodology 
can be extended to assist in the analysis of many such issues, not to do the 

analysis. 

The next section shows how the methodology might used to support an 
illustrative "mission area analysis" for the mission area of theater missile 

defense. 
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7. An Illustrative Mission Area Analysis 

This section briefly introduces some broader programmatic issues and then 

provides an illustrative "mission area analysis" or COEA (cost and operational 
effectiveness analysis) for theater missile defense that suggests a framework for 
comparing different programmatic options in terms of their level of effectiveness, 

marginal costs, and buy-in costs. 

Ingredients of a Mission Area Analysis 

The essential ingredients of a mission area analysis include statements about the 

following: 

• The mission area—countering theater ballistic missiles equipped with 

weapons of mass destruction (WMD). 

• The context—major crisis or conflict in some theater where U.S. vital interests 

are at stake. 

• The threat—the number and type of attacking missiles. 

• The countering players—midcourse/terminal defenses, boost/postboost 

defenses, counterforce operations, passive defenses. 

• The measure of outcome—in our example, the probability of no leakers. 

• The optimum allocation of resources among the players—to be calculated. 

• The total resources required to counter various threats—to be calculated. 

The Threat and Measure of Outcome 

Consider a threat of 51 missiles containing around ten submunitions each for a 
total of 512 submunitions,1 and a requirement for greater than 90 percent 

probability that no operational weapons impact on friendly soil. 

1Because powers of two simplify our computations, we will (with negligible loss of exactness) 
round the number of submunitions from 510 to 512. 
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The Countering Players 

The following systems are available for consideration: 

• Deployment of midcourse and terminal systems has just commenced, and all 
development and engineering costs for these systems are already sunk. The 

cost of deploying these systems is $7 million for each engagement. The 
"probability of kill" (SSPk), given an engagement, for these systems is 1/2, 

while the "probability of leaking" (SSPl) from the midcourse to terminal 

layer is 3/4. 

• There exists an option for deploying a better surveillance system for 
performing kill assessment. This system will reportedly reduce the SSPl after 

a midcourse engagement from 3/4 to 1/2 (that is, it will provide perfect kill 

assessment). There are still development and engineering costs ahead, 

however, as well as the cost of manufacturing and then deploying this 

enhanced system. 

• There also exists an option for developing and deploying a system that will 
attack missiles before fractionation (during boost and postboost phases and 
before submunitions separate),2 but there remain significant development, 

engineering, manufacturing, and deployment costs for this system. 

Programmatic Options 
Option One 

The first option is to deploy a two-layer (midcourse and terminal) system to 

handle the entirety of the threat—but no improved kill assessment system, and 

no boost/postboost systems. 

Given that there are 512 objects, and given an SSPk of 1/2, we know by the "rule 
of four" that we must have 13 engagements per surviving object to attain over 90 

percent probability of no survivors. 

Figure 7.1 shows the cost implications of various partitions of these 13 
engagements into first- and second-layer allocations. The cost per attacking 

object for the endpoints is 13, since all are allocated to the second layer 
(abscissa = 0) or all to the first layer (abscissa = 13). Between these points, the 
cost per attacking object falls to its minimum (about 6.85) at four engagements 

2There are a number of possible operational concepts for destroying missiles during these 
phases. 
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Figure 7.1—Option One: Cost Implications of Alternative Firing Doctrines 

per object in the midcourse layer and nine in the terminal layer, a firing doctrine 
of 4/9.3 If we assume that interceptors in each layer cost $7 million each, then 

the total cost in dollars for 512 attacking objects is approximately $24.6 billion 

(512 -6.85 ^million). 

Option Two 

The second option would be to add a kill assessment system that changes the 
SSPl from 3/4 to 1/2, that is, provides perfect kill assessment between the first 
and second layer. The presence of this system will reduce the costs of deploying 
the midcourse and terminal defenses required to counter the threat of 512 objects. 

The optimal allocation for 13 total engagements per surviving object in this case 

is the firing doctrine 3/10, and the total cost per attacking object is now 4.25.4 

Thus, deploying an improved kill assessment system reduces the cost (in terms of 

^ere, 6.85 = 4 ■ (3/4)4. The function being graphed is x + (n - x)SSPP, where n is the total 
number of engagements per object demanded for the defense system (13 in this case), x is the number 
of engagements per object in the first layer, and (n - x) is the number of engagements per object in the 
second layer. 

4This can be determined analytically or graphically, as above. 
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engagements) per attacking object from 6.85 to 4.25. The total cost for 

interceptors in option two is $15.2 billion (512 • 4.25 • $7 million). 

By deploying the kill assessment system we have saved $9.4 billion in the cost of 

deploying midcourse and terminal systems. To do so, however, we incur the 

cost of deploying the enhanced kill assessment system.5 Thus, one boundary of 

the cost-effectiveness domain is as follows: if the kill assessment system can 

change the SSPl from 3/4 to 1/2 at a cost of less than $9.4 billion, then the system 

can be justified. Table 7.1 summarizes the two programmatic options just 

described. 

Option Three 

We now address a concept for reducing the number of objects presented to the 

midcourse/terminal defenses. We can derive a boundary in the cost- 

effectiveness domain based upon the cost savings resulting from 

boost/postboost phase defenses that reduce the number of objects 

Table 7.1 

Summary of Programmatic Options 

Option Description  
Midcourse/terminal defenses 

First layer SSPk = 1 /2, SSPl = 3/4 
Second layer SSPk = 1 /2, SSPl is N/A 
Optimal firing doctrine 4/9 
Cost per attacking object 6.85 engagements per object 
Total defense costs $24.6 billion 

Add kill assessment system 
First layer SSPk = 1 /2, SSPl = 1 /2 
Second layer SSPk = 1/2, SSPl is N/A 
Optimal firing doctrine 3/10 
Cost per attacking object 425 engagements per object 
Total defense costs $15.2 billion 
Maximum cost for kill assessment 

system $9.4 billion 
Net savings $4.4 billion  

5Tbis conclusion is based upon the size of the threat (512 attacking objects); for far fewer 
attackers, the system might not be justified. 
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the midcourse/terminal defenses must engage, thereby reducing the costs of 

these layers.6 

The first step is to define the function of "cost" versus "effectiveness" for the pre- 

fractionation system(s). Suppose that, based upon research, we believe that the 

relationship between the number of units deployed and the fraction of missiles 

killed is captured by the expression 

fraction killed = 1 - rn/x 

where n is the number of defense units deployed and x is a scaling factor, 
assumed to be 10.  Figure 7.2 plots the function with various values of K;

7
 note 

that the function exhibits diminishing returns to additional levels of effort, as 

would be expected. 

Suppose we determined through modeling and simulation that with ten units of 

a boost/postboost defense (i.e.,« = 10) we could, over the course of the 

RANDMR390-7.2 
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Units of counterforce/boostphase/postboost defenses (n) 

Figure 7.2—Level of Effort of Prefractionation and Percent of Attacker's Missiles Killed 

6 Although we have little evidence regarding either "cost" or "effectiveness" of systems in each 
layer, in order to illustrate a possible approach to a "cost-effectiveness" analysis, we will continue 
with some notional numbers. 

7A similar functional form with different parameters might be established for counterforce. 
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campaign, kill 63 percent of the 51 attacking objects. With n = 10, x = 10, and the 
resulting value of our function equal to 63 percent, we may now estimate the 

fraction of attacking objects that are killed by fixing x at 10 and varying the 

number of units of boost/postboost defenses (n). Assume finally that a separate 

cost analysis indicates that the buy-in cost for boost/postboost defenses is $3 
billion and the production cost of each unit is $500 million. Table 7.2 reports the 
cost consequences of deploying various numbers of units of prefractionation 

defenses. 

In option three the optimal allocation is to deploy 16 units of a prefractionation 

system for boost-phase and postboost-phase defenses. This will provide the 

capability to kill around 80 percent of the 51 attacking missiles before they 

fractionate, and the total cost will be reduced from $24.6 to $15.3 billion, for a net 

savings of $9.3 billion. 

Note that in determining the above costs, we did not consider the costs 
associated with proliferating terminal defenses to provide coverage for a large 

area. A surveillance system that allows early commitment of terminal 
interceptors would provide a larger footprint and thus reduce the number (and 
cost) of terminal sites needed. This is, therefore, another tradeoff to examine in a 

full-fledged mission area analysis. 

Representing the Tradeoff Graphically 

We can now construct a "cost-effectiveness domain" by plotting two functions— 
the dollars avoided on midcourse/terminal defenses as a function of the 

effectiveness of the boost/postboost defenses, and the dollars spent on 

prefractionation defenses. This is done in Figure 7.3. 

In the figure, the large region between the two curves is the "cost-effectiveness 

domain," where it is efficient to buy prefractionation defenses. The maximum 

savings occurs where the slopes of the two curves are identical. Now compare 
this with the $24.6 billion for the two-layer midcourse/terminal system alone and 
note the savings of $9.3 (24.6 -11.0 - 4.3) billion. Note also that the buy-in cost 
does not affect the optimum number of units to buy to gain maximum savings 

but does, of course, decrement this savings—dollar for dollar. 

Section Summary 

The reader can see that there are innumerable variants of the analyses one can do 

to compare different programmatic options, but we believe we have achieved the 
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Figure 7.3—Cost-Effectiveness Domain 

objective of demonstrating how the methodology might provide the analytic 
underpinning for a mission area analysis (or, if you prefer, mission area COEA) 
and a road map for the "players" in this mission area of theater missile defense. 

The next section provides concluding remarks. 
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8. Concluding Remarks 

Throughout this report, our aims have been twofold: to describe a simple 
methodology for determining how to allocate resources among layers of a 
multilayered missile defense, and to provide illustrative results both to show that 
the methodology offers a simple-yet-robust approach to analysis in this mission 
area and to provide critical insights into understanding where the leverage exists. 

Our discussion of the methodology began simply and became successively more 

sophisticated: 

• We began by showing the logic of allocating resources among layers of a 

missile defense system by using a simple worksheet-based approach. 

• We described more formally a simple model that relied on only four 
parameters—the number of layers in the missile defense, the number of 

attacking objects, the demanded probability of no survivors, and the SSPk of 
interceptors in each layer—to determine the optimal firing doctrine to 

provide the desired level of confidence of no survivors of an attacking force 

while minimizing the number of interceptors required to achieve that 

confidence. 

• We then expanded the model to take into account several other operational 
parameters (i.e., the quality of kill assessment, fractionation, saturation and 
exhaustion, and multiple sites to provide a "footprint") and cost variations 

(i.e., different interceptor costs among layers and buy-in costs). We were 
then able to demonstrate, in a first-order way, exactly how these parameters 
affect the optimal allocation. Taking into account these additional 

parameters did not add undue complexity to the basic model. 

• We then examined the effect of some critical uncertainties on the size of the 
missile defense system required to provide a demanded level of confidence 

of no survivors over the campaign without exhausting the inventory of 

interceptors. 

• Finally, we provided an illustrative mission area analysis to show how our 

model might be used in assessing broad programmatic tradeoffs within a 

mission area. 

While there are many policy-relevant insights offered in the course of this study, 

we will close by emphasizing three: 
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• There are numerous and substantial benefits inherent in architectures that 

rely on multiple layers of missile defense. Notably, they achieve high levels 

of effectiveness at far lower cost than that of a single-layer defense. 

• Nevertheless, the costs associated with missile defenses—layered or not—are 
likely to be substantial. As an illustration, we examined an optimized three- 
layered defense made up of interceptors with an SSPk of 1/2 and 64 
attacking objects. The optimum firing doctrine of this defense was one 
engagement per attacking object in the first layer, two in the second, and 

seven in the third. This generates a requirement for 184 interceptors to 

enforce a greater than 90 percent probability of zero leakers. Said another 

way, we must deploy 2.875 interceptors for every object in the attacker's 

inventory. If we want to hedge against exhausting our interceptors in any 

particular campaign, the cost is even higher. Nevertheless, if only a single 

layer of defenses is fielded, the attendant cost of 640 interceptors remains far 

higher. 

• Finally, there is high leverage in engaging attacking objects at the earliest 

possible stage, and certainly before fractionation (preboost, boost, and 
postboost phases). There are other effects we did not examine (e.g., the 
effects of correlated errors in kill assessment) that would also argue for early 

intercept before fractionation. 

Our purpose has not been to provide a comprehensive analysis but rather to 

introduce a methodolology and show how it can be easily extended to consider 
more complex planning considerations. Accordingly, we did not provide a 
definitive and comprehensive analysis of all the technical and operational issues 
and sensitivity analyses attendant to planning missile defenses. We leave it to 

others to apply or adapt the methodology and to examine cases beyond those 

reported here. 

In closing, it is the authors' hope that the methodology developed here is found 

to be useful to both planners and policymakers in assessing the broad 
programmatic options available for providing effective missile defenses. 
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Appendix 

Base Case and Excursions 

Table A.1 summarizes the base case and the various excursions that were 

described in Sections 3 through 5 of this report, in terms of the parameter values, 
optimal firing doctrine and allocation of interceptors to each layer, cost per 

attacker's inventory object, and probability of no survivors of an attacking force. 
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